
S I X T H F O R M K N O W L E D G E O R G A N I S E R

Aspiration Creativity Character

2 0 2 3 / 2 0 2 4

C o m p u t e r
S c i e n c e

K N O W L E D G E O R G A N I S E R G U I D A N C E
I t i s a d v i s e d t h a t y o u p r i n t t h e r e l e v a n t s u b j e c t k n o w l e d g e o r g a n i s e r s a n d h a v e t h e m
a v a i l a b l e t o y o u w h e n n e e d e d a t a l l t i m e s .

A n a l t e r n a t i v e r e c o m m e n d a t i o n w o u l d b e t o d o w n l o a d t h e k n o w l e d g e o r g a n i s e r s f o r y o u r
s u b j e c t s o n t o y o u r e l e c t r o n i c d e v i c e s s o y o u c a n a c c e s s t h e m w h e n n e e d e d .

W i t h t h e k n o w l e d g e o r g a n i s e r y o u s h o u l d m a k e r e v i s i o n c a r d s t o h e l p r e v i s e a n d b u i l d i n t i m e
d u r i n g i n d e p e n d e n t s t u d y t o t e s t y o u r s e l f w e e k l y o n t h e c o n t e n t .

W h i l e y o u h a v e i n d e p e n d e n t s t u d y , y o u s h o u l d u s e y o u r K n o w l e d g e P l a n n e r t o s t u d y t h e
r e l e v a n t s u b j e c t ’ s K n o w l e d g e O r g a n i s e r a n d l e a r n t h e i n f o r m a t i o n p r o v i d e d .

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

3. The F-D-E (Fetch Decode Execute) Cycle

The F-D-E Cycle
repeatedly cycles

The Fetch Stage

The address is generated by the Program Counter (PC) and is
carried to the Memory Address Register (MAR) using the Address
Bus. The PC then updates and stores the next memory address,
ready for the next round of the cycle. The data or instruction that
is in that memory location is placed on the data bus and carried
to the processor and is stored in the Memory Data Register (MDR)

The Decode Stage
The data or instruction is then the Memory Data Register (MDR),
decoded to find out if it is a piece of data or if it an instruction to
do something such as ADD, STORE, SWITCH, REPEAT, etc...

The Execute Stage

The CPU performs the actions required by the instruction. If it is
an instruction to control input or output devices, the Control Unit
will execute the instruction. If it is a calculation then the
Arithmetic and Logic Unit (ALU) will execute the instruction. The
results of any calculations are recorded in the Accumulator

1.The Purpose of the CPU

The Purpose of the
CPU

To manage basic operations of the computer. To be the 'brains' of the computer

The main components
of the CPU

Control Unit, Arithmetic Logic Unit, Cache

Von Neumann
Architecture

The architecture that allows for the storage of instruction and data in the same
location

The FDE Cycle The cycle the CPU continuously carries out to process instructions

Binary The number system used to store instructions and data in the computer

The role of a register
in the CPU

it is a place to temporarily hold data and instructions as they are being processed by
the CPU

The PC The Programme Counter keeps the address of the next instruction to be processed

The MAR
The Memory Address Register is used to tell the CPU where to locate data in the Main
Memory

The MDR The Memory Data Register is used to store data that is fetched from the Main Memory

The ACC
The Accumulator stores results of logic operations a nd calculations used during
processing

2.Common CPU Components and their Function

The Control Unit
has two functions

(1) Sending signals to control the flow of data and instructions, and
(2) decoding instruction

Cache memory
A small section of extremely fast memory used to store commonly used instructions and
data. Is it useful as the CPU can access the (fast) cache directly. L1 cache is closest to the
CPU; L3 is the furthest

The ALU has the
following
functions

It carries out mathematical operations/logical operations/shifting operations on data; e.g.
multiplication, division, logical comparisons

An Address
This is the location in the Main Memory (RAM) that stores data or instructions in the Van
Neumann Architecture

Buses
Transfers information between the CPU and the Main Memory (and other places). E.g. the
Address bus carries memory addresses between the CPU and RAM

1.Fetch
2. Decode3. Execute

4. Performance of the CPU

Cores
CPUs with multiple cores have more power to run multiple programs at
the same time

Clock Speed
The clock speed describes how fast the CPU can run. This is measured
in megahertz (MHz) or gigahertz (GHz) and shows how many fetch-
execute cycles the CPU can deal with in a second

Cache Size

The more data that can be held in the cache, the shorter the trips the
electric pulses need to make, so this speeds up the processing time of
each of those billions of electrical signals, making the computer
noticeably faster overall

5. Embedded Systems

Definition
A computer system which
forms part of an
electronic device

Reasons
They are cheaper to make
and smaller than a General
Purpose Computer

Re-
programmable

Not for different purposes
but firmware can
sometimes be upgraded

Examples
Washing machine. Smart
Oven, Car Engine,
Pacemaker

1: Systems Architecture

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character
2: Primary and Secondary Storage 3. Secondary Storage

Difference from
primary storage

Primary storage (e.g. RAM, cache) is volatile. Secondary storage is non-volatile. It
retains its data when the power is switched off

Cache memory
A small section of extremely fast memory used to store commonly used instructions and
data. Is it useful as the CPU can access the (fast) cache directly. L1 cache is closest to
the CPU; L3 is the furthest

ROM as secondary
storage

Not really. ROM is read only. Secondary storage generally needs to be written to as well
as read from

1.The purpose of RAM and ROM in a Computer System

The purpose of
RAM

RAM is the main memory (also called primary storage) for storing data
and programs while they are in use

The purpose of
ROM

ROM stores the boost sequence, which is a set of instructions that the
computer executes every time it is switched on. ROM is essential since it
loads the operating system

We use RAM
rather than
Secondary
Storage

The RAM can be accessed at a much higher speed than the secondary
storage. If the CPU was having to communicate directly with secondary
storage for the F-D-E cycle, the computer would be incredibly slow

Volatility
ROM is non-volatile (it keeps its contents when the power is turned off).
RAM is volatile (it loses its contents when the power is turned off)

Primary Storage
Devices

Primary storage devices are internal to the system and are the fastest
of the memory/storage device category. Typically, primary storage
devices have an instance of all the data and applications currently in
use or being processed. The computer fetches and keeps the data and
files it in the primary storage device until the process is completed or
data is no longer required. RAM, ROM, Graphics Card RAM, cache and
registers are common examples of primary storage devices

Increasing RAM
This can speed the computer up since there is less need for virtual
memory

2. The Need for Virtual Memory

Definition of
virtual
memory

A temporary storage space taken up on a secondary storage device (e.g.
hard disk) to allow more space for running programs and data than can fit in
primary storage (RAM)

Use of virtual
memory

Open applications/data that are not in current use are 'paged' out to the
secondary storage. When they are needed, they are 'paged' back into
primary memory

Advantage
of virtual
memory

Having virtual memory available allows a computer to run more programs at
the same time, or to run larger programs; or to work with much larger
amounts of data than could fit in the primary storage (main memory / RAM)

Disadvantag
e of virtual
memory

It is relatively slow compared with RAM. The need to page data in and out of
the secondary storage device slows down the computer. It can also lead to
'disk thrashing'

4. Common types of storage

Optical

The surface of a CD is covered in microscopic dots. A laser would skim across the surface
reading these. As the laser passes over, the pattern on the surface is picked up. If the laser hits
a dot it is reflected differently to if there were no dot present. Eg. CD/CDR/CDRW/DVD/
BluRay

Magnetic

Magnetic hard drives uses silver coloured disks which are covered on both sides with a magnetic
film divided into billions of tiny areas. Each one of those areas can be independently
magnetised (to store a1) or demagnetised (to store a O). The read.write heads would flicker
quickly over the surface as it reads and writes the data. Several platters would be installed in
one hard drive to give greater storage capacity. E.g. Hard disk Drive/DAT/Tape Drive/Cassette

Solid
State

Solid-state secondary storage does not have any moving parts. Solid state secondary storage
stores data using circuit chips. they are sometimes called flash drives. E.g. USB drives/SD
Cards/SSD Drives

5. Considerations for the Most suitable Storage Device

Capacity How much data needs to be stored?

Speed How quickly can the data be stored? How quickly does it need to be read?

Portability Does the device need to be transported? Are weight and size important?

Reliability Is it mission critical? Will it be used over and over again?

Cost How expensive is the media per byte of storage?

6. Typical uses

Optical Read only distribution on a large scale (CD/DVD). Relatively small capacity

Magnetic High data capacity. Reasonably fast. Low cost. Cloud storage on server farms

Solid State Low power. Small. Rugged. Silent. Very fast. Medium data capacity

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

S I X T H F O R M K N O W L E D G E O R G A N I S E R
C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

A computer system has both hardware and software.

Hardware is the physical components
that make up a device or computer
system. These include both the internal
components (eg motherboard, CPU, RAM)
and also peripheral and networking
devices such as printers and routers.

Software is the computer code, programs
and algorithms that give instructions to
the hardware to make it perform the
desired task. Without the software the
hardware will not get any instructions and
it will not do anything.

1.2 Software and software development

Hierarchy of software
Application Software
General purpose Software - Software that is designed to be widely used in many
ways for both business and personal use (eg applications such as word processing,
presentation software, spreadsheet, and web browser).

Specialist Software – Software that is developed for a specific use or for a
specific business, scientific, or educational area. For instance, air traffic control
systems and stock control systems would fall under this category.

Bespoke Software – The is tailor made software that is developed for a specific
organisation or client. Bespoke software is expensive but meets the specific needs
of an organisation.

The most important piece of system software is the operating system.
The operating system is system software with the role of managing the hardware
and software resources.
The OS handles management of the processor, memory, input/output devices,
applications and security.
The OS hides the complexity of the hardware from the user and provides a user
interface.

The role of the Operating System

Application management - Application software does not need to concern itself
with interaction and complexities of managing the hardware because this is dealt with
by the operating system. Application software needs to run on top of operating system
which takes care of interaction with the hardware resources.

Processor resources – Allows multiple applications to be run simultaneously by
manages the processing time between applications and cores and switching
processing between applications very quickly. Multiple applications will access the
processor resources via a schedule that alternates processing between applications.
High priority applications will have more CPU time, but it means that lower priority
applications will take longer to run.

Memory management – The OS distributes memory resources between programs and
manages transfer of data and instruction code in and out of memory. Ensures that
each application does not use excessive memory.

Input / Output devices – The OS controls interaction with input (eg keyboard) outputs
(eg. Monitor) and storage (eg hard disk) using hardware drivers. Allows users to save
files to the hard disk for instance.

System software

System software is concerned with the running of the computer. Its purpose is the
control the computer hardware and manage the application software.

Program translators allow programs to be translated into machine code so that code
can be run on a computer. Translators include interpreter, compiler and assembler.
Libraries are collections of prewritten code that can be used in software projects. Thee
libraries significantly speed up the development process. Libraries can be reused across
multiple applications.
Utility programs are applications that help with the running of the machine.

Common utility programs include:
Auto backup and restore: Incremental backup is useful because only files that have
changed or been added since the last full backup needed to be backed up.
Anti-virus: Scans the computer to identify malicious code
Firewall Scans input and output packets and prevents malicious packets accessing the
computer.
Disk defragmentation: Organises files on a disk to be located contiguously. Often after
defragmentation performance is improved because a file can be accessed from one
location on a disk. Files can become fragmented when the original file increases in size
and no longer fits into a contiguous location and has to be split over multiple locations.

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

Advantages Disadvantages

Static data
structures

Memory locations are fixed and can be
accessed easily and quickly and are in a
contiguous position in memory

Memory is allocated even
when not is not being used

Dynamic data
structures

More flexible and more efficient than static
data structures because we only use memory
that is needed.

Uses linked lists and makes it much easier to
remove and add element.

Data structure may be
fragmented so can be
slow to access.

1.4 Data types, data structures and algorithms Abstract Data Types: Abstract data types allow us deal with the operations and behaviours of a data type and not to be
concerned with their operation which is abstracted away.

Data Structures
Static data structure
This is a fixed block of memory that is reserved at the start of the program.
This is a contiguous space on disk. The next memory location is the next
address and its position can be implied, so there is no need to explicitly point
to it.

Suppose we want to remove the ‘u’. This is not easy for static memory
location because we must move all the succeeding elements up one place.

Dynamic Data Structure
Dynamic memory allocation is where memory is allocated and deallocated
during the running of the program. The memory is allocated on the heap. The
heap allows random allocation and access of memory. dynamic memory
allocation uses linked lists where each element points to the address of the
succeeding element.

To remove an element just requires pointing to a different address

Conversely to add an element just requires pointing to that address

Stacks are a last in first out file system just like a stack of plates. That is the last item added to
the stack isd the first to be retrieved.

Stacks

Stack operations:
push: add element to the stack
pop: remove element from the stack
peek/top: view the top element on a stack
without removing
isEmpty: test to see if stack is empty
isFull: test to see if stack is full

Can reverse a sequence of numbers by popping a value from o ne stack and pushing to
another
Used in Reverse Polish Notation
Stack frames used in subroutine calls

Uses of stacks:

A queue is a first in first out data structure.
Typically queues are used in buffering where a
sequence of instructions are sent to a printer
for instance, and the printer prints of the
document in order in which the instructions
arrived. Lists can be used to represent queues.

Queue operations:
Add: add element tot he end of a queue
remove: remove element from front of queue
isEmpty: test to see if queue is empty
isFull: test to see if queue is full

Queues

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

Linear Queue
As an item is removed from the
queue all the other items move
up one space. For a long queue
this can take a lot of processing.

Linear queue using pointers
As an item is removed from the
queue the pointer representing
the start of the queue also
moves up. We need to know
the length of the queue and
how many elements have been
removed. The problem
with this method is that we end up with a lot of empty cells in memory that
are now unused at the front of the list.

Circular queue:
In a linear array when items are removed
removed from the memory location those
memory locations are allocated but are no
longer used. Circular queues get around this
problem by 'recycling' these memory
locations at the back of the queue.

Priority queue:
Each element is assigned a priority. Highest
priority items are removed first. If elements
have the same priority then the item nearest
the front

of the queue is removed first. So in this case 0 would be removed.

Alternatively, the queue could
store items in priority order and
the item removed from the front
of the queue as with a linear
queue.

1.4 Data types, data structures and algorithms Graphs

A graph is a way of representing the
relation between data. A graph is made
up of vertices/nodes that are
connected by edges or arcs. This could
represent a rail or road network

Graphs do not need to be connected. this is a
valid graph.

Weighted graph
Weighted graphs add a value to an arc.
This might represent the distance
between places or the time taken
between train stations.

Graphs can be represented as adjacency matrices
Graphs with no weights are given a value of 1 for
connected nodes

Adjacency Matrix with no weighting

Adjacency Matrix with weighting

Adjacency List with no weighting

Graphs can also be represented as adjacency lists.
Adjacency list for figure 1

Figure 1

Figure 2

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

Directed graphs
Undirected graphs have
connections in both directions.
Directed graphs only apply in
one direction and are
represented with edges with
arrow heads on one end.

Directed graph as adjacency list

An array contains the value at the nodes
An array that points to the location of left child of the node in the values array
An array that points to the location of right child of the node in the values array
If a node does not have child node then this is indicated with a -1 or null

1.4 Data types, data structures and algorithms

Trees

A tree is a connected, undirected graph with no cycles
Connected: Every node is connected either indirectly to directly to every
other node
No Cycles: There is only one path between nodes
Undirected: can traverse in both directions along the edges
A rooted tree has a root node that has no parent and all other nodes are
descended from the root. All other nodes can be a parent and/or a child
node.
A leaf has no children

In a binary tree a node can only have a
maximum of two child nodes
A binary tree can be used for sorting a
sequence of numbers
The first number is the root node
If the number is smaller than the node then
we branch left, if it is bigger, we branch right

Binary Tree

We can represent a tree data structure with
three lists/arrays

Tree data structure

A binary tree for a sequence of
numbers: 10,1,17,4,8,11,14,16,5,12

Adjacency List with weighting

Graphs can also be represented as adjacency
lists. Adjacency list for figure 2

Directed graph as adjacency matrix

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

Create empty dictionary id={}

Create a dictionary
id=
{23:"James",25:"Thomas",1
8:"Gordon",32:"Percy"}

Return a value associated
with a key

id[23]->James

Add a value id[33]="Trevor"

List values id

Remove a value del id[32]

Other hashing algorithms
If the data you want to convert has letter and not
numbers, you can convert the data to corresponding
ASCII values.

Worked Example
Put the numbers 81, 93, 76,
51, 17, 61 into a hash table
with 10 elements. Because
the values are bigger than the
length of the list, we apply the
modulo which is the length of
the table.

Vector Notation
Function Representation
A vector can be represented as a Function (f: S → R) where S is the set that
maps to R. For instance S=[0,1,2,3,4] and R=[4.0,5.5,6.7,9.1,-2.3]

1.4 Data types, data structures and algorithms
A dictionary is an abstract data type. It contains a list of pairs of values with a key that is
associated with a value. We use key to access a value.

d i c t = { k e y 1 : v a l u e 1 , k e y 2 : v a l u e 2 , . . . , k e y N : v a l u e N }

Using a dictionary to represent a graph
g={"a":{"b":5}, "b":{"a":5,"c":3,"d":4}, "c":{"b":3}, "d":{"b":4}}

Dictionaries

Hash Table
Hashing allows stored data to be accessed very quickly without the need
to search though every record. This is achieved by relating the data itself
to its index position using a key. There are several hashing algorithms that
can achieve this.
If the calculated number is bigger than the length of the list then you will
need to apply the modulo
Collisions occur when a bin is already occupied. In such a situation the data
are placed in the next available bin
You can rehash with a higher modulus and number of elements when the
number of collisions become high
The load factor is the number of occupied bins delivered ny the number of
total bins
The hash table should contain more bins than there are elements that you
would like to store by a load factor of 0.75
If the load factor is exceeded, we can rehash using a larger hash table with
a greater number of bins.

Worked Example
Let us consider the
following names:
Bart, Homer, Lise,
Milhouse, Ralk.
We have a has
table with 10
elements.

81 MOD 10 - 1 (81 goes into index position 1)
93 MOD 10 = 3
76 MOD 10 = 6
51 MOD 10 = 1 (a collision has occurred,
place in next available position)
17 MOD 10 - 7
61 MOD 10 - 1

Vectors
0→4.0
1→5.5
2→6.7
3→9.1
4→-2.3

List/1-D array representation
e.g. A 5 vector over R would be: [4.0,5.5,6.7,9.1,-2.3]

Dictionary representation
A 5 vector could be represented as a dictionary with both sets and mapping
e.g. R={4.0,1:5.5,2: 6.7,3: 9.1,4: -2.3}

Visualisation of a vector
We can represent a vector as geometric point
in space. A 2-vector e.g. [3,4] can be
represented by an arrow with its tall at [0,0]
and its head at [3,4]. Vectors have both
magnitude and direction.

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

Worked example:
Find a+b where a =[2, 3, 6, 8] and b=[3, 1, 4, 5]

a = [2, 3, 6, 8]
 + + + +
c = [3, 1, 4, 5]
a+b = [2+3, 3+1, 6+4, 8+5]
a+b = [5, 4, 10, 13]

Dot product
The dot product of two vectors is calculated by multiplying
the corresponding element in both vector and adding
together all the elements. Given vector a and b such that
a = [a1, a2, ..., an] and b = [b1, b2, ..., an]
Then a.b = (a1 x b1) + (a2, x b2) + ... , + (an x bn)

Scalar vector multiplication
Vectors can be multiplied by scalars (single numbers).
Each element is multiplied by the scalar

1.4 Data types, data structures and algorithms

Vector addition
Each element in the vector is added to the corresponding
value at that element in the other vector.

Worked Example
Find 2a where a= [2, 3, 6, 8]
2a = [(2x2) , (3x2) , (6x2) , (8x2)]
2a = [4, 6, 12, 16]

Worked Example
Find a.b where a= [2, 3, 6, 8] and b= [3, 1, 4, 5]
a =[2, 3, 6, 8]
 x x x x
b =[3, 1, 4, 5]
a.b =[6 + 3 + 24 + 40]
a.b = 73

Convex combination of 2 vectors
Every convex combination of 2 points lines on a line between the two points 2 points.
This has the form au + bv where a + b = 1 and a, b >= 0

Worked Example
Find the convex combination au + bv of vectors u=[1, 2] and
v=[4, 3], where a=o.4 and b=0.6

au = [1*0.4, 2*0.4]
au = [0.4, 0.8]
bv = [4*0.6, 3*0.6]
bv = [2.4, 1.8]
au+bv = [2.4+0.4, 0.8+1.8]
au+bv = [2.8, 2.6]

Angle between 2 vectors
The angle between two vectors is calculated as:
cos(a) = a.b / |a|.|b|

Worked Example
Calculate the angle between two vectors a=[3, 4], b=[4, 3]

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

Large programs are broken down into subtasks/subroutines that are easier
to program and manage
Each subroutine (i.e. module) can be individually tested
Modules can be re-used several times in a program or elsewhere
Frequently used modules can be saved in a library and used by other
programs. For example, in C# rnd, sqrt. Having components that have
already been written, debugged and tested will save the programmer time.
Several programmers can simultaneously work on different modules.
shortening development time
Programs are more reliable and have fewer errors
Programs take less time to test and debug
A well-organised modular program is easier to follow
New features can be added by adding new modules

Thinking Procedurally
Problem decomposition
Decomposition is the breaking down of a complex problem into smaller more
manageable problems that are easier to solve. Each component of the program
completes a specific task. This allows algorithms to be more modular.

Each 'end of branch' is a module/subroutine to be programmed. This is known as
top-down design. The diagram above is called a hierarchy chart.

Advantages of Decomposition

Hangman

Handle Player
Input

Stick man Word to find

Check if all
letters found

Convert to
array

Generate
random word

Check if stick
man complete

Update when
letter not in word

Check if letter
in array

Hierarchy charts: Useful for identifying the major task and breaking these down into subtasks
Flowcharts: Useful for getting down initial ideas for individual subroutines
Pseudocode: will translate easily into program code

Sequence: one line is executed after another
Selection: if, elif, else; switch, case, endswitch
Iteration: while, endwhile; do, until; for, next loops

Thinking Logically
Tools for Designing Algorithms

Programming Structures
Flowchart Symbols

2.1 Elements of computational thinking

When you first start programming, the most common errors you make will be syntax errors
Logic errors are another type of error. They occur not because of an error in the syntax, but
instead because you get unexpected results
Logic errors normally occur at points where selection occur (if...else) or at points of iteration

Programming Errors

Requires a processor/CPU with multiple cores
Each core processes different instructions at exactly the same time
Impossible on a single core processor
CPUs can contain up to 64 cores (and counting)

Thinking Concurrently

Parallel Processing

Happens on a processor with a single core
The core appears to process different instructions at the same time, but it is an illusion
Each process is given slices of processor time, giving the appearance that several tasks are being
performed simultaneously

A process can be broken down into multiple threads - instructions to be completed one after the
other in sequence
A single core can cope with two threads simultaneously
A four-core CPU would have (be able to handle) eight threads (simultaneously)
Thread can start and end at different times
Thread can overlap in their execution (fetch-decode-execute)

Concurrent Processing

Threads

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

Sometimes you might have a situation where you don't want threading
to occur
This would be when you don't want two operations to be happening
simultaneously, because it will create a bug or similar problem
For example, two threads are incrementing a counter, both by one.
The result should be 117, but since they are happening simultaneously,
the outcome is not expected:

In such situations, as part of the code, you can lock threads for certain
operations, preventing this from happening (first operation completes
before the second is implemented)

Involves splitting larger tasks, and overlapping the processing of them
With regards the CPU, to speed up processing time, while one
instruction is fetched, another can be decoded and a third executed
Can also relate to, in an algorithm, the output from one procedure
being used for the input for another

Thread locking

Pipelining

o Counter value is 115
o First thread reads the value of the counter from the memory (115)
o First thread increases the local counter value (116)
o Second thread reads the value of the counter from the memory (115)
o Second thread increases the local counter value (116)
o Second thread saves the local counter value to the memory (116)
o First thread saves the local counter value to the memory (116)
o Value of the counter is 116

2.1 Elements of computational thinking

An exhaustive search for
all possible solutions
until one works
Also known as brute
force - testing every
combination of possible
routes until you find the
shortest one

Enumeration

Problem Solving

This is where the situation is simulated
to help find the best solution to the
problem
Might require an entirely computer-
based simulation, e.g. to solve
queuing problems
Might required a physical model too.
E.g. to investigate air resistance on a
model of a new F1 car design

Simulation
This involves utilising a
database of previously
experienced patterns in
order to find a match
May take heuristic
approach to find a best
fit

Pattern Recognition

This involves reducing the
size of a problem with every
iteration
The best-known example is
the binary search, which is a
method of searching a
sorted list for a particular
item
Another is a merge sort

Divide and Conquer Backtracking is an approach to a
problem where partial solutions are
built up to produce a full solution
If a pathway fails, some of the
partial solutions up to that point
are discarded and you start again
from the last potentially successful
point
Same as trial and error or trial and
improvement

Backtracking

Data mining is the process of digging through
large sets of data in order to (one or more
of); find hidden links and relationships,
recognise patterns and trends and predict
future trends
Big data was a term coined in the early
2000s to describe vast amounts of
information now available to the computing
world

Data Mining and Big Data

There are often other options for solving
problems apart from brute force methods
One method is to find a solution which is
likely to be correct, or which is nearly but not
quite, perfect but sufficient, in a reasonable
time frame. This is called a heuristic
approach

Heuristic Methods

It is often important to know how a system will perform in real life before implementing it
To save money, time and in the interest of safety, models (simulations) are built (physical
and/or computational) to predict what will happen in real life
It can also be used to stress-test a program with large volumes of test data before going live.

Performance Modelling

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

Time complexity = measure of the
time required by a computer to run
the algorithm, given input values of
size n
Space complexity = amount of
computer memory required to run
the algorithm, given input values of
size n
Big-0 value shows how
time/memory increases input data
size increases
The default Big-0 value normally
considered is the worst-case,
though the best case and average
case should be considered
The best time complexity is 0(1),
then 0(log n), then 0(n), etc...

Big-0 Notation

The time complexity of an algorithm
is the worst-case number of
operations required for an algorithm
to complete given a data size of n

Linear Search
If you have to search for
items in a file (or in an
array), and the
list/array are not in any
particular order (i.e.
sorted), you will have to
search through the
items one by one.

2.3 Algorithms Search Algorithms

Can only be performed on an ordered list
Examine the middle value. Use (LB + UB)/2 and round
down if there's an even number of items (i.e. DIV)
Check if item you are looking for is more than or less
then this item
Whichever half it must be in, discard the other half
including the middle item you had
Repeat until found

Binary Search

As the size of the data set doubles, the maximum number
of possible checks only increases by one. This means the
time complexity is 0(log n).

Binary Search - Recursive Version

Linear Search vs Binary Search
Time Complexity

In the best case,
both searches have
equal complexity.

However, in average
and worst case,
binary search is more
efficient (0(log n) is
better the 0(n)).As the size of the data set doubles, the maximum

number of possible checks also doubles. This means the
time complexity is 0(n).

Binary Tree Search
Similar to binary search
algorithm. except instead of
using midpoints, half od the
tree/subtree is eliminated
with each pass after
examining its root

The number of items to
search is halved with
each pass
Conversely, the
(maximum) number of
passes increases by
one as the tree is
doubled in size
This gives the same
time complexity as the
binary search, 0(log n)

Binary Tree Search - Time Complexity

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

Index position 0 1 2 3 4 5 6 7

Value V A S Z X R T G

i x pos found itemSearch
listOfItems

[1]
Out
put

0 5 -1 False 1 6

1 3

2 9

3 1

4 4 True 4

Searching Algorithms2.3 Algorithms

The purpose of the linear search algorithm is to find a target item
within a list
Compares each list item one-by-one against the target until the
match has been found and returns the position of th eitem in the
list
If all items have been checked and the search item is not in the
list, then the program will run through to the end of th elist and
return a suitable message indicating that the item is not in the list
The algorithm runs in linear time. If n is the length of the list, then
at worst the algorithm will make n comparisons. At best, it will
make 1 comparison and on average it will make (n+1)/2
comparisons
The performance of the algorithm will be improved iof the target
item is near the start of the list
The time complexity of the linear search algorithm is 0(n)

Linear Search Algorithm

Example
Find the position of letter "Z" within the following list. Assume we do
not have visibility of the list:

Worked example: given the following values for listOfItems
and itemSearch, we have the following trace table

listOfItems ← [6,3,9,1,2]
itemSearch ← 1

We compare it with the value in index position 0. We find that the
value is "v" so we need to move on to the next index position. At
index position 1 and 2, we still have not found z. However, we get to
index position 3 and we compare the target with the value and we
find they match, so the algorithm returns the index position and
stops.

Pseudocode
i ← 0
x ← len (listOfItems)
pos ← -1
found ← False
WHILE i < x AND NOT found
 IF listOfItems[1] == itemSearch THEN
 found ← True
 pos ← i + 1
 ENDIF
 i=i+1
ENDWHILE
OUTPUT pos

The binary search algorithm works on a sorted list
by identifying the middle value in the list and
comparing it with the search item
If the search item is smaller, the mid element
becomes the new high value for the search area
If the search item is larger, the mid element
becomes the low value for the search area
This keeps repeating until the search item is found
When the search item is found, the index position
of the item is returned
At each iteration, the search are halved in size.
Consequently, this is an efficient algorithm
The time complexity if the binary search algorithm
is 0(log n)

Binary Search Algorithm

Examples: Binary search in operation to find 81

Pseudocode

low ← 1
high ← LENGTH(arr)
mid ← (low + high) DIV 2
WHILE val # A[mid]
 IF A[mid] < val THEN
 low ← mid
 ELIF A[mid] > val THEN
 high ← mid
 ENDIF
 mid ← (low + high) DIV 2
 ENDWHILE
OUTPUT mid

Worked example: given the following values for arr
and val, we have the following trace table:

mid high low A[mid] A[high] A[low]

6 11 1 41 98 0

8 11 6 68 98 41

9 11 8 72 98 68

10 11 9 81 98 72

Advantages Disadvantages

Linear
Search

Very simple
algorithm and
easy to implement
No sorting
required
Good for short
lists

Slow because
it searches
through the
whole list
Very inefficient
for long lists

Binary
Search

Much quicker than
linear search
because it halves
the search zone at
each step

The list needs
to be ordered

Linear search versus binary search

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

Call num Call Output Return

1 BinarySearchTree(10,5) 10

2 BinarySearchTree(1,5) 1

3 BinarySearchTree(4,5) 4

4 BinarySearchTree(8,5) 8

5 BinarySearchTree(5,5) 5 5

Sorting Algorithms2.3 Algorithms

Python implementation using lists

def binaryTreeSearch(node,searchItem)
 path.append(values[node])
 if values[node] == searchItem:
 return "Value in Tree. Path: "+str(path)
 elif values[node] < searchItem:
 if treeRight[node] == -1:
 return "Value not in Tree"
 return binaryTreeSearch(treeRight[node] ,searchItem)
 elif values[node] > searchItem:
 if treeLeft[node] == -1:
 return "Value not in Tree"
 return binaryTreeSearch(treeLeft[node] ,searchItem)

path = []
node[0,1,2,3,4,5,6,7,8,9]
values = [10,1,17,4,11,8,14,5,12,16]
treeLeft = [1,-1,4,-1,-1,7,8,-1,-1,-1]
treeRight=[2,3,-1,5,6,-1,9,-1,-1,-1]
print (binaryTreeSearch(0, 5))

Tracing

Sorting Algorithms
Bubble Sort
Go through the array, comparing
each item to the one next to it
Of it is greater then the next one,
swap them over
The last element will be the
largest one after the first pass
There will be a total of n-1 passes.
The number of comparisons
reduce by one with each pass.

Insertion Sort

Much like you would sort a hand of playing
cards. From the left, move each card into the
correct position relative to those its left.

Bubble Sort vs Insertion Sort Time Complexity

Both have the same best, average and worst case time
complexity
However, in real-world terms, the insertion sort is
considered slightly more efficient - in most average
situations, there will tend to be slightly fewer iterations
required to take place than for a bubble sort
Also, a bubble sort requires items to be swapped,
while an insertion sort requires items to be simply
moved (which is a less complex process)

Bubble Sort vs Insertion Sort Time Complexity
For a list of size n, both algorithms will require n
memory locations
No matter how big the data set gets, the amount of
space required (extra to the data itself) remains the
same
Both algorithms are 'inplace' - the sorting takes
place within the data set itself, not outside of it
Thus, the space complexity of both algorithms is 0(1)
(i.e constant no matter how large the data set is)

Merge Sort
Successively split the
lists into sublists until
there is only one item in
each sublist
Merge pairs of sublists
into sequenced lists of
2, then 4, ther 8 etc..
items until all items are
in one merged list
This is the sorted list

This is a recursive
function
This first function
continually subdivides
the list until we get
individual 'lists' of one
element each
Due to the nature of
recursion, the 'merge'
function occurs as part
of the unwinding,
gradually merging the
lists together, two at a
time

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

Since this uses a divide and conquer approach, as seen
for a binary search (doubling the number of items only
adds one more iteration), the time complexity is 0(log n)
However, for each 'set' of n items to sort, there will be n
sublists that need to be combined
This means the time complexity has to be multiplied by a
factor of n
So, overall time complexity is 0(n log n)
This is the same in the best case, average case and
worst case

Merge Sort Time Complexity

2.3 Algorithms Sort Algorithms

Quick Sort

Dijkstra's Inefficiency

Quick Sort Time Complexity and Space
Complexity

Quick Sort vs Merge Sort Time Complexity

The majority of sorts will be average case, so no real difference
in time complexity
Only in the worst case does a merge sort outperform a quick sort
in terms of time complexity
The merge sort has a much worse space complexity
For very large data sets, this problem with space complexity that
the merge sort has compared to the quick sort is a real problem
Can result in more use of virtual memory, impacting time and
performance as this secondary storage is required to be
accessed more regularly
For these reasons the quick sort is generally regarded to be the
'best'

Dijkstra's Shortest Path Algorithm

Select a pivot value, e.g. first item in the list, but
could be any
Divide the remainder of the list in two portions:
all elements less than the pivot value must be in the
first partition
all elements greater than the pivot value must be in
the second partition
Recursively repeat the process until each partition
holds only once item. Recombining the elements
from the bottom will mean the list is now sorted

1.

2.

Dijkstra's algorithm will potentially
visit every node in order to find the
shortest distance between two
nodes
Dijkstra's algorithm takes no account
of the best general direction to
head in. The only thing considered is
the distance between nodes (no
matter whether you are heading
towards your destination, or away
from it)

The merge sort requires additional memory for
storing the left and right halves of the list as they
are combined (worst case, this will be n items in
both halves combined)
This gives a space complexity of 0(n)

Merge Sort Space Complexity

Again uses a divide and conquer approach, as seen
for a binary search (doubling the number of items only
adds one more iteration), the time complexity is 0(log
n)
However, each of the n items has to be compared
against the current pivot value, meaning the time
complexity has to be multiplied by a factor of n, so
overall average case time complexity is 0(n log n)
In the worst case, every data item would need to be
involved in a swap or change of position for each
iteration. The worst case time complexity is 0(n)
The space complexity is 0(log n)

2

A* Algorithm
Similar to Dijkstra's algorithm, but
uses two costs
Dijkstra's algorithm has one cost for
each path, the real cost (e.g.
distance) from one node to another
The A* algorithm uses this cost too,
but also an approximate cost from
each node to the goal. You could
also think of it as a 'crow flies' value
- the rough direct distance from
each node to the destination

Although it might sometimes be a good idea to travel away
from your destination for a short distance (e.g. to get on the
motorway), in general it is best to travel toward the destination
The A* algorithm is likely to outperform Dijkstra's algorithm
because it is likely to visit less nodes, find a more direct,
optimum path more quickly, and consequently be more
efficient

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

Step 1: Divide - Keep dividing until
there is only 1 in each listMerge sort is a type of divide

and conquer algorithm
There are two steps: divide and
combine
Merge sort works by dividing the
unsorted list sublists. It keeps on
doing this until there is 1 item in
each list
Pairs of sublists are combined
into an ordered list containing
all items in the two sublists. The
algorithm keeps going until there
is only 1 ordered list remaining
Merge sort is a recursive
function that calls itself
The time complexity of merge
sort is 0(n log n)

Merge Sort

the first items in the
the two sublists are
compared and the
smallest value is
copied to the parent
list
The copied item is
then removed from
the sublist
When there are no
items left in one of
the sublists, the
remaining items in
the other sublists are
then copied, in order
to the parent list

1.

2.

3.

Merge sort pseudocode
SUBROUTINE MergeSort(List, Start, End)

 IF Start < End THEN

 Mid ← (Start + End) DIV 2

 List1 ← MergeSort (List, Start, Mid)

 List2 ← MergeSort (List, Mid + 1, End)

 List3 ← []

 WHILE LEN(List1_ > 0 AND LEN(List2) > 0

 IF List1[1] > List2[1] THEN

 APPEND List2[1] TO List3

 POP List2[1] FROM List2

 ELSE

 APPEND List1 [1] TO List3

 POP List1[1] FROM List1

 ENDIF

 ENDWHILE

 WHILE LEN(List1) > 0

 APPEND List1[1] TO List3

 POP List1[1] FROM List1

 ENDWHILE

 WHILE LEN(List2) > 0

 APPEND List2[1] TO List3

 POP List2[1] FROM List2

 ENDWHILE

 RETURN List3

 ELSE

 List4 ← []

 APPEND List[Start] To List4

 RETURN List4

ENDSUBROUTINE

Step 2: Combine

Sorting Algorithms2.3 Algorithms

The purpose of sorting algorithms is to order an
unordered list. Item can be ordered alphabetically
or by number
Bubble sort steps through a list and compares pairs
of adjacent numbers. The numbers are swapped if
they are in the wrong order. for an ascending list, if
the left number is bigger than the right number, the
items are swapped, otherwise the numbers are not
swapped
The algorithm repeatedly passes through the list until
no more swaps are needed
The time complexity of the algorithm is 0(n)2

Example: Sort
the following
sequence in
ascending order
using bubble
sort: 5,3,4,1,2

Bubble Sort

A ← [5,3,4,1,2]
sorted ← False
WHILE not sorted
 sorted ← True
 FOR i TO LEN (A)-1:
 IF A[i] > A[i+1]:
 temp ← A[i]
 A[i] ← A[i+1]
 A[i+1] ← temp
 sorted ← False
 ENDIF
 ENDFOR
ENDWHILE
OUTPUT A

Bubble sort pseudocode

Merge Sort vs Bubble Sort

Advantages Disadvantages

Bubble Sort Very simple and
robust algortihm

Can be slow particularly for
long lists. As the number of
items increases, the time
taken for the algorithm to
run increases dramatically

Merge Sort

Much faster then
bubble sort, especially
when the number of
elements is large

More complex to
understand
Step 1: Divide
Step 2: Combine

Call Start End Mid
List

Returned

1 1 5 3

2 1 3 2

3 1 2 1

4 1 1 [5]

3 1 2 1

5 2 2 [3]

3 1 2 1 [3,5]

2 1 3 2

6 3 3 [4]

2 1 3 2 [3,4,5]

1 1 5 3

7 4 5 4

8 4 4 [1]

7 4 5 4

9 5 5 [2]

7 4 5 4 [1,2]

1 1 5 3 [1,2,3,4,5]

Tracking the code
L=[5,3,4,1,2]
MergeSort(L,1,5)

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

No. of digits No of combinations

2 2

3 6

4 24

5 120

How many different
combinations can
sequence of digits
have?

run if we increase the size of the input. We need to
consider how many operations will need to be carried out
for a given size of input. This gives is the time complexity
of the algorithm.

where x is a value from the domain and y a value from the
codomain
domain -> codomain

A linear function takes the form y = mx + c, where m is the
gradient and c the intercept on the y axis.

A polynomial function takes the form y = ax + bx + c

An exponential function takes the form y = a

A logarithm function takes the form y = alog x

Permutations illustrate how the number of operations
grows factorally when we add additional dimensions to
some problems.

n

2

x

Constant Time 0(1)
The time remains constant
even when the number of
input increases. E.g.
calculating the sum of a
sequence of numbers.
sum = (n+1) * n/2
Regardless of how many numbers we wish to add up, the
time taken will always be the same.

The time efficiency of algorithms refers how long an
algorithm takes to run as a function of the size of the
input
More than one algorithm can be used to solve the same
problem
For instance, to calculate the sum of a sequence of
numbers, we can use the following algorithm:

 sum = (n + 1) * n / 2
where n is the number we wish to sum the values up to. Using
this calculation the time remains constant regardless the
value of n. In other words, regardless of how many numbers
we wish to add up, the time taken will always be the same.

Using this algorithm , the number of operations increases in
linear time with the size of the input. Therefore, the time
taken for the algorithm to run will grow in linear time as in size
of the input increases. Clearly this is more inefficient than the
first algorithm even though it solves the same problem.

Another area where algorithms differ in their efficiency is in
regard to the memory requirements of algorithms. For
instance, programs that read in huge data files into memory
can end up taking up large space in memory.

When developing algorithms, it is important to consider the
hardware constraints of the system you are developing, e.g.
mobile phone which has limited processing and space
capability. If you have large memory, then your algorithm can
afford to be less space efficient. Likewise, if you have access
to tremendous processing power algorithm (e.g.
supercomputer), you may not need to be time efficient,
although it is still desirable to make algorithms as efficient as
possible.

Comparing Algorithms

2.3 Algorithms Classification of Algorithms

Logarithmic Time 0(log n)
The time taken for the
algorithm toi sun will grow
slowly as in size of the input
increase

Linear Time 0(n)
The time taken for the algorithm to run will grow linear
time as in size of the input increases.

Polynomial Time 0(n)
The time taken for the algorithm to run will grow
proportionally to the square of the size of the data set.

2

Exponential Time 0(2)
The time taken for the
algorithm will grow as the
power of the number of
inputs, so the time taken
for the algorithm to run will
grow very quickly as more
input data are added.

sum ← 0

FOR i ← 1 to n

 sum ← sum + i

ENDFOR

OUTPUT sum

We could use alternative
algorithm to calculate the
sum of a sequence of
numbers.

Maths for Bog O Notation
A function allows us to map a set of input values to a set of
output values y = f(x)

Big-O notation gives
us an idea of how
long a program will

E.g. inefficient algorithm to
calculate the sum of a
sequence of numbers
sum = 0

for i=0 to n

 sum = sum + 1

output (sum)

Normally when you have
nested for loop, this will
have a polynomial time
complexity.
for i=0 to n

 for j=0 to n

 Do something

The time taken for an algorithm to run will depend on the
hardware (e.g. processor clock speed, RAM size), even
though the number of operations will be constant for a
fixed output
Tractable problems are problems that have a polynomial
or less time solution e.g. 0(1), 0(n), 0(log n), 0(n)
Intractable problem are problems that can be
theoretically solved but take longer than polynomial time
e.g. 0(n!), 0(2)
Heuristic algorithms are used to provide approximate but
not exact solutions to intractable problems.

2

n

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

Greedy algorithm: take the shortest route to the next city
Visit the cities in a circle
Brute force algorithm: apply to small but different subsets
of cities. Apply the brute force algorithm to fewer,
manageable problems rather than a single, intractable
problem

The idea is to find the shortest route to visit all cities. This is a
permutation of the number of cities, so has a factorial time
complexity, so quickly becomes an intractable problem with
an unfeasibly huge number of permutations.

To solve this we use an heuristic algorithm. This provides and
acceptable solution to the problem but it may not be the
optimal or best solution. So for the travelling salesman
problem, we may find a short route but not necessarily the
shortest route. Heuristic algorithms for the travelling salesman
problem include the following:

Time complexity of common algorithms

Linear Search 0(n)

Binary Search 0(log n)

Binary Tree Search 0(log n)

Bubble Sort 0(n)

Merge Sort 0(n log n)

Travelling Salesman Problem 0(n!)

Brute force password cracker where n is the
legnth of the password

0(A)

A [B, B]

B [A, E, C, F]

C [B, F]

D A, E]

E [D, B]

F [B, C]

Depth First Traversal
Depth first traversal starts at a node and traverses
along each path as far as it goes before backtracking
to the next branch. Depth first traversal uses recursion.
An application of a depth first traversal is for
navigating a maze.

Uses recursive calls
depth_first_traversal (node)
 visited.append (node)
 for i in graph [node]:
 if i not in visited
 depth_first_traversal (i)

Graph represented as an adjacency
list
graph={"A":["D","B"], "B":["A","E","C",
"F"],\
"C": ["B","F"], "D": ["A","E"],\
"E":["D","B"],"F":["B","C"]}

Breadth First Traversal
Breadth first traversal starts at a node and explores all the
neighbour nodes before moving into the next ;evel of nodes. A
breadth first traversal uses an iterative approach. A typical
application of a breadth first traversal is for determining the
shortest path of an unweighted graph.

breadth_first_traversal (node)
 queue = []
 visited = []
 queue.append (node)
 visited.append (node)

 while queue is not empty
 node = queue.pop (0)
 print (node, end = " ")
 for i in graph [node] :
 if i not in visited
 queue.append(i)
 visited.append(i)

graph={'A':['D','B'],\
'B':['A','E','C','F'], 'C': ['B','F'],\
'D': ['A','E'],'E':['D','B'], 'F':['B', 'C']}

breadth first traversal ("A")

Call Node i visited

[]

1 A [A]

2 D D [A,D]

A

3 E E [A,D,E]

D

4 B B [A,D,E,B]

A

E

5 C C [A,D,E,B,C]

B

6 F F [A,D,E,B,C,F]

Node i output visited queue

A [A] [A]

A []

D [A,D] [D]

B [A,D,B] [D,B]

D D [B]

A

E [A,D,B,E] [B,E]

B B [E]

A

C

C [A,D,B,E] [E,C]

F [A,D,B,E,C,F] [E,C,F]

E [C,F]

C [F]

F []

The Travelling Salesman Problem

2.3 Algorithms

2

n

Unsolvable problems. Some problems cannot be solved by
a computer. The Halting problem is one such problem and
shows that some problems cannot be solved algorithmically.

The Halting problem states that there is no computer
program that exists that can determine whether another
computer program will halt or will continue to run forever,
given some specific input.

Traversing Graphs
We can use depth first traversal or breadth first traversal to
traverse a graph: Graph used in example to follow:

Navigating a maze with depth first
traversal
Nodes are placed at the start and
end points as well as at locations
where there are alternative paths

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

Pre-order
traversal

Post-order
traversal In-order traversal

Order
visit node
left traversal
right traversal

1.
2.
3.

left traversal
right traversal
visit node

1.
2.
3.

left traversal
visit node
right traversal

1.
2.
3.

Example 10, 1, 17 1, 17, 10 1, 10, 17

Example
application

Prefix Notation,
Copying a tree

Reverse Polish
Notation

Ordering a
sequence of

numbers, binary
tree search

Node
Value
[node]

Tree_left
[node]

Tree_right
[node]

Output

1 10 2 3

2 4 4 5

4 3 -1 -1 3

2 4 4

5 5 -1 -1 5

1 10 10

3 17 6 7

6 11 -1 -1 11

3 17 17

7 18 -1 -1 18

Node
Value
[node]

Tree_right
[node]

Tree_left
[node]

Output

1 + 3 2 +

2 - 5 4 -

4 2 -1 -1 2

2 - 5 4

5 4 -1 -1 4

1 + 3 2

3 * 7 6 *

6 6 -1 -1 6

7 7 -1 -1 7

Pre-order tree traversal
Post-order tree traversal

In-order tree traversal

There are three ways of traversing a binary tree:

Tree Traversal2.3 Algorithms

When traversing a tree we start at the root node. We can
then visit the node (that is, obtain the value of the node),
traverse left or traverse right.
The order in which we visit,
traverse left or traverse right
depends on the traversal
method that we use.

In-order traversal
in_order_traversal (node):
 if tree_left[node] != -1:
 in_order_traversal(tree_left[node])
 print(values[node])
 if tree_right[node] != -1:
 in_order_traversal(tree_right[node])
node_index[1,2,3,4,5,6,7]
values=[10,4,17,3,5,11,18]
tree_left=[2,4,6,-1,-1,-1,-1]
tree_right=[3,5,7,-1,-1,-1,-1]
in_order_traversal(1)

Sequence output:
3,4,5,10,11,17,18

Pre-order traversal
pre_order_traversal (node):
 print(values[node])
 if tree_left[node] != -1:
 pre_order_traversal(tree_left[node])
 if tree_right[node] != -1:
 pre_order_traversal(tree_right[node])
values=["+","-","*",2,4,6,7]
tree_left=[2,4,6,-1,-1,-1,-1]
tree_right=[3,5,7,-1,-1,-1,-1]
pre_order_traversal(1)

Sequence output: *3 5 - 11 18

Post-order traversal
post_order_traversal (node):
 if tree_left[node] != -1:
 post_order_traversal(tree_left[node])
 if tree_right[node] != -1:
 post_order_traversal(tree_right[node])
 print(values[node])
values=["+","-","*",2,4,6,7]
tree_left=[2,4,6,-1,-1,-1,-1]
tree_right=[3,5,7,-1,-1,-1,-1]
post_order_traversal(1)

Call Node
Value
[node]

Tree_right
[node]

Tree_left
[node]

Output

1 1 + 3 2

2 2 - 5 4

3 4 2 -1 -1 2

2 2 - 5 4

4 5 4 -1 -1 4

2 2 + 5 4 -

5 3 * 7 6

6 6 6 -1 -1 6

5 3 * 7 6

7 7 7 -1 -1 7

5 3 * 7 6 *

1 1 + 3 2 +

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

Step 1 Add brackets (3 + ((5 x 3) / (7 - 4)))

Step 2 Write out the operands with
spaces 3 5 3 7 4

Step 3

Starting with the inner most
brackets, move the operator to
after the operands from
between the operands

3 5 3x 7 4- 3+(15/3)
3 5 3x 7 4/ 3+5
3 5 3x 7 4/+ 8

1 2 3 4 5 8 9

5 3 1 4 1 6 6

5 3 5 1

5

531+-6x 531+-6x 531+-6x 531+-6x 531+-6x 531+-6x 531+-6x

Push 5
onto
stack

Push 4
onto
stack

Push 1
onto
stack

Pop 1,3
Evaluate 1+3=4
Push result on
stack

Pop 4,5
Evaluate 5-4=1
Push result on
stack

Push 6
onto
stack

Pop 6,1
Evaluate
6x1=6 Push
result on stack

Symbol Action
Output
queue

Operator
stack

2 Push operand onto output queue 2

+ Push operator onto operator stack 2 +

5 Push operand onto output queue 2 5 +

x
Push operand onto operator stack, x has higher
precedence than +

2 5 x+

3 Push operand onto output queue 2 5 3 x+

/
Pop stack to output, x has same precedence as /. Push
on operator stack, / has higher precedence than +

2 5 3 x
2 5 3 x

+
/+

2 Pop operand onto output queue 2 5 3 x 2 /+

Pop whole stack onto output queue 2 5 3 x 2/+

Reverse Polish Notation2.3 Algorithms

Simpler for computer to evaluate
Do not need brackets
Operators appear in correct order of precedence of operators,

Go through each character in the postfix expression from left to right
If character is a number, then push number onto the stack
Otherwise, if the character is an operator (+,-,/,X), then pop the top

Infix Notation
We are all familiar with infix notation where the operators appear between the operands
(i.e. the numbers) that you want to apply the operator to.

Reverse Polish Notation (Postfix)
RPN uses postfix notation where the operators follow the operand. Using infix notation to
add two numbers we get:
<operand> <operator> <operand> 3 + 4

In RPN (postfix notation) this becomes:
<operand> <operand> <operator> 3 4 +.

Many interpreters and compliers automatically convert between infix notation to postfix
notation, so there is no requirement to write code using the less familiar postfix notation.

Advantages of Postfix

 so there are fewer operations

RPN Algorithm
1.

2.
3.

 2 numbers from the stack
 4. Evaluate the 2 numbers using the operator
 5. Push result back onto the stack

Convert from infix to Postfix notation

Worked example: Solve the following expression: 53 1 + - 6 x
Stack at each step: Answer is 6. Infix expression (5-(1+3))x6

Alternative Shunting Yard
Algorithm to convert from
infix to postfix notation

Worked example: Convert the following expression to RPN: 2 + (5x3)/2

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

q u v a Distance Previous_node

1,2,3,4 100 100 100 100 -1 -1 -1 -1

0

2,3,4 1 2 2 2 1

3 5 5 1

4 3 3 1

3,4 2 3 3 3 2

4 3

- 4

u/v 1 2 3 4

1 0 2 5 3

2 0 0 1 0

3 0 0 0 0

4 0 0 0 0

Trace table given then following matrix

Dijkstra Pseudocode
Q ← []

distance ← []

previous node ← []

FOR i← 1 TO NUMBER_OF_VERTICIES

 Append i to Q

 Append 100 to distance

 Append -1 to previous_node

ENDFOR

distance[1] ← 0

WHILE LEN(Q) != 0

 u ← Q[1]

 Pop u from Q

 FOR v in Q

 IF matrix[u][v] > 0:

 a=distance[u] + matrix[u][v]

 IF a<distance[v]

 distance[0]=a

 previous_node[v]=u

 ENDIF

 ENDIF

 ENDFOR

ENDWHILE

Optimisation algorithms2.3 Algorithms

The purpose of Dijkstra's algorithm finds the shortest path
between nodes / verticies in a weighted graph
Selects the unvisited node with the shortest path
Calculates the distance to each unvisited neighbour
Updates the distance of each unvisited neighbour if
smaller
Once all neighbours have been visited, mark nodes as
visited

Dijkstra's shortest path algorithm

Example Graph

Start at node A because it is the unvisited node with the
shortest distance to node A. The distance to each unvisited
neighbour is 3 and 5 for B and C respectively. B has the
shortest distance to node A so this is the next unvisited node
we select. At B, there is only 1 neighbour (C). The distance is
updated because the route A-B-C (4) has less cost than the
route A-C(5). E is the next unvisited node with the shortest
distance and is has neighbours D and F. F has the less cost
out of the two and is then selected as the next unvisited node.
The shortest route is A-C-E-F.

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

S I X T H F O R M K N O W L E D G E O R G A N I S E R
 C

o
m

p
u

te
r

S
c

ie
n

c
e

Aspiration Creativity Character

Simple sentence: A sentence containing one main clause with a subject and a verb.
He reads.
Literacy is important.

Compound sentence: Two simple sentences joined with a conjunction. Both of these simple sentences would make
sense on their own. Varying conjunctions makes your writing more interesting.
He read his book because it was written by his favourite author.
Literacy is important so students had an assembly about reading.

Complex sentence: A longer sentence containing a main clause and one or more subordinate clause(s) used to add
more detail. The main clause makes sense on its own. However, a subordinate clause would not make sense on its
own, it needs the main clause to make sense. The subordinate clause is separated by a comma (s) and/or
conjunction. The clause can go at the beginning, middle or end of the sentence.
He read his book even though it was late.
Even though it was late, he read his book.
He read his book, even though it was late, because it was written by his favourite author.

How can you develop your sentences?
1. Start sentences in different ways. For example, you can start sentences with adjectives, adverbs or verbs.
Adjective: Funny books are my favourite!
Adverb: Regularly reading helps me develop a reading habit.
Verb: Looking at the front cover is a good way to choose a reading book.
2. Use a range of punctuation.
3. Nominalisation
Nominalisation is the noun form of verbs; verbs become concepts rather than actions. Nominalisation is often used in
academic writing. For example:
It is important to read because it helps you in lots of ways.
Becomes: Reading is beneficial in many ways.
Germany invaded Poland in 1939. This was the immediate cause of the Second World War breaking out. Becomes:
Germany's invasion of Poland in 1939 was the immediate cause of the outbreak of the Second World War.

Connectives and Conjunctions

Cause
And

Effect

Because
So
Consequently
Therefore
Thus

Addition
And
Also
In addition
Further (more)

Comparing

Whereas
However
Similarly
Yet
As with/
equally/Likewise

Sequencing

Firstly
Initially
Then
Subsequently
Finally
After

Emphasis
Importantly
Significantly
In particular
Indeed

Subordinate
Who, despite, until, if,
while, as, although,
even though, that,
which

S I X T H F O R M K N O W L E D G E O R G A N I S E R Aspiration Creativity Character
L

it
e

ra
c

y
 K

n
o

w
le

d
g

e
 O

rg
a

n
is

e
r S P a G

G r a m m a r : W r i t e i n S e n t e n c e s
A s e n t e n c e i s a g r o u p o f w o r d s t h a t m a k e s e n s e . S e n t e n c e s s t a r t w i t h a c a p i t a l
l e t t e r a n d e n d w i t h a f u l l s t o p , q u e s t i o n m a r k o r e x c l a m a t i o n m a r k . A l l s e n t e n c e s
c o n t a i n c l a u s e s . Y o u s h o u l d t r y t o u s e a r a n g e o f s e n t e n c e s w h e n w r i t i n g . T h e r e
a r e t h r e e m a i n t y p e s o f s e n t e n c e s .

Punctuation

Use a range of punctuation accurately when you are writing.

. Full stop Marks the end of a sentence.

, Comma Separates the items on a list or the clauses in a sentence.

‘ Apostrophe Shows possession (belonging) or omission (letters tak en away).

“ ” Quotation marks Indicate a quotation or speech.

‘ ’ Inverted commas Indicate a title.

? Question mark Used at the end of a sentence that asks a question.

! Exclamation mark Used at the end of a sentence to show surprise or shock.

: Colon Used to introduce a list or an explanation/ elaboration/ answer to
what preceded. A capital letter is only needed after a colon if you are writing
a proper noun (name of person or place) or two or more sentences.

; Semi-colon Joins two closely related clauses that could stand alone as
sentences. Also used to separate items on a complicated list. A capital letter
is not needed after a semi-colon unless you are writing a proper noun (name
of person or place).

Brackets Used to add extra information which is not essential in the
sentence.

S I X T H F O R M K N O W L E D G E O R G A N I S E R Aspiration Creativity Character
L

it
e

ra
c

y
 K

n
o

w
le

d
g

e
 O

rg
a

n
is

e
r S P a G : S p e l l i n g a n d P u n c t u a t i o n

Spelling

Use the following strategies to help you spell tricky words.

1. Break it into sounds (d-i-a-r-y)

2. Break it into syllables (re-mem-ber)

3. Break it into affixes (dis + satisfy)

4. Use a mnemonic (necessary – one collar, two sleeves)

5. Refer to word in the same family (muscle – muscular)

6. Say it as it sounds - spell speak (Wed-nes day)

7. Words within words (Parliament – I AM parliament)

8. Refer to etymology (bi + cycle = two + wheels)

9. Use analogy (bright, light, night, etc)

10. Use a key word to remember a spelling rule (horrible/drinkable
for -ible & -able / advice/advise for -ice & -ise)

11. Apply spelling rules (writing, written)

12. Learn by sight (look-cover-say-write check)

