KNOWLEDGE ORGANISER GUIDANCE

It is advised that you print the relevant subject knowledge organisers and have them
available to you when needed at all times.

An alternative recommendation would be to download the knowledge organisers for your
subjects onto your electronic devices so you can access them when needed.

With the knowledge organiser you should make revision cards to help revise and build in time
during independent study to test yourself weekly on the content.

While you have independent study, you should use your Knowledge Planner to study the
relevant subject’s Knowledge Organiser and learn the information provided.

Haggerston School

FORM ORGANISER Computer
Science

2023/2024

Creativity

Computer Science

Paging

A martkcd of manipulacing memory which uses pages to
stored code in Hoed sipe bocks and allows programs T non
dempte insufficierd memary, Uses virtual isemsary

ORGANISER

Segrmentation

A mithed of manipulatiog memary which uses
segments to store code In different sived, logical
sections. Lses wirbual memarny

Paging

Segroentation

Acvantages.

Disadvantages

Advanitages Disadvantages

Allows programs ta run
despite insufficent memany
using virtual memoey

When virtual memary is
s, if it takes too bkang for
pages Lo be maved 1o the
disk the computber will siow
dhawin |Diske theashing)

When wirtual memory is
used, If it taies too kang for
segments Lo be maved 10
the disk the computer will
slow dioren [Disk thrashing)

Allgws programs to run
despite insufficiont memary
using virtual memory

Fages are all of the same
size

Segmands have logcal
divisions which are more
efficient

Pages Fit sections af

Segmens ane different sizes

memony to match the sections of a
Pragram
Segments inchude complete:
sectiens of programs far
passar referance
Wirtual machine
ISR {Interriipt Serios = ramne I
_ perating System:
Rt ne | ‘When software is used to take on the

Omtermine what hapesns
when an intenrupd is raised

function of a physical machene.

Salvwang that ranages he handware, solteans, spcurity and
user interface of a compuber

« Emulators provide the ilusian that

Scheduling

& way of sarsagirg the arsunt of s prograss
hiaree i Ehe CPLU

MEmary managerment

& way of ersuring Ehat programs in memarny anly
access thelr cawn dats or any autharised shared
data with other pragrams

Wirtual memary

A matheed of frewing availble memany in the RAM
by mowing unused program sectiors ta the kard
dreve. When the section of code is needed again it is
returned to the KA

i Tivier

Saftwane which tell the OF haw ta communicate
with a dewice, .. @ printer driver

BIDS (Basic Imput Output Syster

Chiecks that tha compater s functikonal amd loads the
05 kernel into memory

= Thebaalitrap B respanalle Tor kaading the 05
inta Py

= Initial st up instnactions are soced in AOM

w BN settngs are sored in non-olatie Nek
Ry

Intermediate Code

Code between sounce code and machne code
which can bi read by virtual machines

Reglsters

i [FORRAM B Funming on native # Manages the imterupts in the processor
harcware s Manages memory induding pagng, segmentation and
wirtusl memory
Interrupt * Manages external devices: OF retructions an
comverted g instruction the bardware can mead by

& sagnal which seops tha Decode Aaice drivars
detch decode eae: ube opche = Manages retworking: ication 1o o her devioes
droem running normaly in through protocal
arder fo prigritise 4 o Managis G Mt
ciMierant a devics
Types of interrupt: h Execute
Hardware: [
* Power pressed Higher /
* Memory parity []u] priarity

Brroe interrupt? Decode
Zaftware: YES
* lllegal instruction
= Arithmetic overllow
* New log-on request Registars Load 158 F Ex

cack etch ecuta

Inputfoutput:
+ Buffer almost 3 me

empty \
* Data transfer

completion

YES

Inteérrupt
complate

* off stack

Haggerston School

Scheduling algorithms:

FCFS5 {First come first served]:

Tasks are executed to completion and in order
regardless of tima

SIF (Shortest job first]):

The shortest task is emecuted first to completion. The
algerithm needs to know the time each job will take In
advance

EGif (Rowsnd robink:

Eaxch task & given a certain amount of time. IF it hasn't
finished it rejoins the end of the queue

SRT |Shortest remaining tirme|:

The shortest task Is emecuted to comphetion or until a
task with a shorter remaining time joins the gueue

MLFO (Bulti-laval fi k u

Multiple queves are used with different priorities and
Jobs are moved between the queues degending on
their behaviaur

Types of operating system:
Distributed O5:

Controls computers on a network and presents them
to the wser as one system

Ernbadded 05

Specifically designed for a device and runs efficiently
with little rarmory and low power CPUS &g, ina
wiashing maching

Multi-tasking 05:

Allows multiple application to be opan at once by
switching between running programs, &g Windows

Multi-usar

Allows multiple users to Access a computer
simultaneausly with individual preferences, eg. a
supErcompuer

Real-tire O5:

Processes are always executed in a certain time frame
to cater for unusually high demand, &.g. plane
autopllat and hospital machine

FORM

instructions.

+ Von Neumann Architecture has one control unit,
ALU, registers and memory unit with a shared
memory and data bus used for data and

« Harvard Architecture has separate memories for
Instructions and data. It is more commonly used in
embedded processors

+ Yon Neumann Architecture is cheaper to develop
as the control unit is simpler and allows programs
to be optimised in size,

« Harvard Architecture allows data and instructions
can be fetched in parallel and both memories can
b different sizes.

ORGANISER

Random Access Memory (RAM)

« Volatile

» Holds data and programs which are
currently in use

= High access speeds

= Very expensive per gigabyte

Read Only Memory (ROM)

+ Mon-volatile (Cannot be modified)

» Usad 10 store fixed instructions such
as the computer start up routine

+ Fatch Phase:

+ Decode Phase:

+Execute Phase:

RAM and ROM Fatch Decode Execute Cycle and Registers

+ The order operations take place to execute an instruction.
ohddress copled from the PC to the MAR.
oData bus copies the instruction from that location to the MDR
ot the same time, the contents of the PC increase by 1
o The value is them copled from the MDR to the CIR
o The contents of the CIR are split into operand and opcode

o The opcode is executed on the oparand.

Haggerston School

instructions in main memary
» Harvard is used when warking with cache.
» Has a separate instruction and data cache.

Contempaorary Processing

« Combines Harvard and Von Neumann architectura
»Von Neumann is used when working with data and

instructions.

execute it.

Busses and Assembly Language
+ Assembly code USes MNBMONICS 1o represant

» Instructions are divided into operand and opcode
+ Opcode is the type of instruction and the hardware to

» Operand is the address where the operation is performed.

Multi-core and Parallel Systems
+ Mulli-cora CPUs have many cores which
complete separate fetch-sxecuts cycles

independently.
+ Parallel systems can carry out multiphe
instructions simultaneously using a single
core using technigues like pipelining.

Unit 1.1 The Characteristics of Contemporary Processors, Input, Output and Storage Devices

Reduced |nstruction

operations.

« The CU (Control Unit) directs operations
inside the processor.
» Registers are small, fast memory cells

used to temporarily store data.
Program Stores the address of
Counter (PC) the next instruction to
be executed.
Accumulator Stores the results of
(ACC) calculations.
Memory Holds the address in
Address memary that is to be
Reqister (MAR) | written to or read
from.
Mamory Data Haolds data which has
Register (MDR) | been read or needs
1o be written.
Currant Stores the current
Instruction instruction, split into
Register (CIR) | operand and opcode.

CPU Components Flash Storage Magnetic Storage

» Tha ALU (Arithmetic and Logic Unit)
carrias out arithmetical and logical

« Fast and compact

» Logic gates store an
electrical charge

» High reprasents a binary
1

= Twio magnatic states represant binary
oPolarised sectors represent 1
cUnpolarised sectors represent 0
= Can ba damaged by strong magnets
Hard Disk Drives

+ High capacity

» Low represants a binary 0
» Information is stored in

» Magnetic platters rotate at high speeds

Set Computers (RISC)
» Small instruction sat
» One instruction is one

(CISC)
» Large instruction set
» Instructions built into hardware

Complex Instruction Set Computers

line of machine code + Used in microcontrollers and embedded
+ Used in personal systems
computers + Compiler has less work to do

« Less RAM is needed 1o store the code

» Buses are parallel wires connecting two

Clock Speed:

+ Determined by the system clock

=+ All activities bagin on a clock
pulse

+ Each operation starts when the
clock changas from 0 to 1

» The clock speed is the number

or more CPU components together.
» The number of parallel wires determines
the bus width.
» The system bus contains the data bus,
control bus, and address bus.
Data A bi-directional bus which

o access data over a
network or The Internal
+ Includes cloud storage and

= Outpul devices allow the computer
to sand information out, such as a

speaker or Screarn.

blocks which are beneath a readiwrite head of clock cycles which can be
ecombined to form pages » Multiple platters are stacked lo maximise Optical Storage ecompleted in a second.
» More expensive storage capacity | » Use lasers 1o read and write o a disk. = Faster clock speed = better
» Limited lifespan » Moving parts can become damaged « Sectors of the disc are written in a spiral. performance
Solid State Drives Magnetic Tape = Pits scatters light representing 0 Number of Cores:
+ Light and partable = An older storage medium = Lands reflects light representing 1 » Each core is an independent
* Mo moving parts =+ Tape is round onto reels within a cartridge. « Small and light so very portable processor which execules its
* More resistant lo damage + The tape drive spins the reels to move the « Easily scratched own fetch-execute cycle
from movement than hard tape across a reader « Mot very fast + CPUs with several cores can
disk drives Floppy Disks Compact Disk (CD) complete more than one fetch-
+ High data transfer rates = A thin magnetic disk in a plastic case. » Commonly used for audio but can store any data type execule cycle at the same time
+ Smaller capacity than = Small and portable » Stares relatively litle information = Some applications can only use
hard disk drives « Typical storage capacity of 1MB Digital Versatile Dise (DVD) one core.
» Higher starage capacity than CDs 'm better
= Oftan used 1o stora wdeos
» A methed of storing « Inpul devices are used to send Blu-Ray :lnwurtandtypnnﬂ:am
infarmation remotely. dta o the computer, such as a « More than five times as much storage as a DVDs E:;':I’ e
= Allows multiple computers keyboard, mouse or senser. = Used o store HD films * bl IMMPE Btmemaony

Instructions are held in cache

network accessible
slorage.

+ Becaming mora popular as
network and Internet

» Storage devices allow data to be
stored such as a hard drive.

« Some devices can be both an
output and input device, such as a

Computer Science

Bus transfers data and
instructions betwean
componants.

Address | Transmits the location in

Bus memory whare data should
b read or written.

Control | A bi-directional bus which

Bus transmils control signals.

speeds increase. touch screen.

» Relies on a network. » Factors such as speed, accuracy,
connaction for access to cost and relevance to the task
data. should be considerad when

= Limited by network speed. choosing devices.

accessed

« Allows three instructions to be + Had multiple processors working Z'L?:Iﬂ:“u’ﬂd‘:f
processed through the fetch, decode in parallel. » As cache fills up, unused
and execute cycle at the same time. » Efficiently completes repetitive instructions are ovenwriten.

« Data is stored in a buffer close to the tasks. » More cache = better
CPU until required. = Used for image processing and performance

« Whilst ane instruction is being machine learning. » Cache can be Level 1,2, or 3
executed, another can be decoded and * A co-processor (a secondary o Level 1 is the fastest but
another fetched. processor which supports the smallest

» Reduces the amount of CPU idle time. activities of the primary s Level 3 is the slowest but largest

Processor.

Haggerston School

FORM ORGANISER

1: Systems Architecture

3. The F-D-E (Fetch Decode Execute) Cycle

_D- 1.Fetch
The F-D-E Cycle / \2 -

The P f th repeatedly cycles 3. Execute
C:U urpose ot the To manage basic operations of the computer. To be the 'brains' of the computer

1.The Purpose of the CPU

The address is generated by the Program Counter (PC) and is
carried to the Memory Address Register (MAR) using the Address

The main components

of the CPU Control Unit, Arithmetic Logic Unit, Cache The Fetch Stage Bus. The PC then updates and stores the next memory address,
ready for the next round of the cycle. The data or instruction that
Von Neumann The architecture that allows for the storage of instruction and data in the same is in that memory location is placed on the data bus and carried
Architecture location to the processor and is stored in the Memory Data Register (MDR)
The FDE Cycle The cycle the CPU continuously carries out to process instructions The data or instruction is then the Memory Data Register (MDR),
The Decode Stage | decoded to find out if it is a piece of data or if it an instruction to
Binary The number system used to store instructions and data in the computer do something such as ADD, STORE, SWITCH, REPEAT, efc...
The role of a register | it is a place to temporarily hold data and instructions as they are being processed by The CPU performs the actions required by the instruction. If it is
in the CPU the CPU an instruction to control input or output devices, the Control Unit
) i The Execute Stage | will execute the instruction. If it is a calculation then the
The PC The Programme Counter keeps the address of the next instruction to be processed Arithmetic and Logic Unit (ALU) will execute the instruction. The
The MAR The Memory Address Register is used to tell the CPU where to locate data in the Main results of any calculations are recorded in the Accumulator
Memory
4. Performance of the CPU
The MDR The Memory Data Register is used to store data that is fetched from the Main Memory
CPUs with multiple cores have more power to run multiple programs at
)))) Cores .
The ACC The Accumulator stores results of logic operations a nd calculations used during the same time
processing

The clock speed describes how fast the CPU can run. This is measured
Clock Speed | in megahertz (MHz) or gigahertz (GHz) and shows how many fetch-
execute cycles the CPU can deal with in a second

2.Common CPU Components and their Function

The Control Unit | (1) Sending signals to control the flow of data and instructions, and

has two functions |(2) decoding instruction The more data that can be held in the cache, the shorter the trips the
) electric pulses need to make, so this speeds up the processing time of
A small section of extremely fast memory used to store commonly used instructions and Cache Size each of those billions of electrical signals, making the computer
Cache memory data. Is it useful as the CPU can access the (fast) cache directly. L1 cache is closest to the noticeably faster overall

CPU; L3 is the furthest

The ALU has the 5. Embedded Systems

It carries out mathematical operations/logical operations/shifting operations on data; e.g.

Computer Science

followi .
© ov.vmg multiplication, division, logical comparisons A computer system which They are cheaper to make
functions b
Definition forms part of an Reasons | and smaller than a General
An Address This is the location in the Main Memory (RAM) that stores data or instructions in the Van electronic device Purpose Computer
Neumann Architecture
Re Not for different purposes Washing machine. Smart
B Transfers information between the CPU and the Main Memory (and other places). E.g. the roarammable but firmware can Examples | Oven, Car Engine,
uses
Address bus carries memory addresses between the CPU and RAM preg sometimes be upgraded Pacemaker

FORM

2: Primary and Secondary Storage

1.The purpose of RAM and ROM in a Computer System

3. Secondary Sto

Haggerston School

ORGANISER

rage

Difference from
primary storage

Primary storage (e.g. RAM, cache) is volatile. Secondary storage is non-volatile. It
retains its data when the power is switched off

The purpose of | RAM is the main memory (also called primary storage) for storing data) _)
RAM and proarams while they are in use A small section of extremely fast memory used to store commonly used instructions and
e V Cache memory data. Is it useful as the CPU can access the (fast) cache directly. L1 cache is closest to
The purpose of ROM stores the boost sequence, which is a set of instructions that the the CPU; L3 is the furthest
ROM computer execu*’es e Ll | ROM as secondary [Not really. ROM is read only. Secondary storage generally needs to be written to as well
loads the operating system storage as read from
RAM
:/Zjhfrefhan The RAM can be accessed at a much higher speed than the secondary 4. Common types of storage
S d storage. If the CPU was having to communicate directly with secondary
Secon ary storage for the F-D-E cycle, the computer would be incredibly slow The surface of a CD is covered in microscopic dots. A laser would skim across the surface
IERLEO Optical reading these. As the laser passes over, the pattern on the surface is picked up. If the laser hits
RO s memralatle (i ks T comEmia e 1 pewer & (med o P a dot it is reflected differently to if there were no dot present. Eg. CD/CDR/CDRW/DVD/
lartilit ’
Volatility RAM is volatile (it loses its contents when the power is turned off) Bluleyy
q) Primary storade devices are internal to the svster and are the fastest Magnetic hard drives uses silver coloured disks which are covered on both sides with a magnetic
O of the >rlnemorg/s’roro o device cateqory. T yiccll o e film divided into billions of tiny areas. Each one of those areas can be independently
e hove);n ins’rc?nce of all the oslaa’r;l'cri,z o)Ili,cZ’rionsycurren?I - Magnetic | magnetised (to store al) or demagnetised (to store a O). The read.write heads would flicker
(- Primary Storage use or being brocessed. The comouter feTchech)Jid keeos the da’royond quickly over the surface as it reads and writes the data. Several platters would be installed in
Devices o 1 Thg srimory sf<;rcge devti):e Py — isiomple’red or one hard drive to give greater storage capacity. E.g. Hard disk Drive /DAT/Tape Drive /Cassette
q) data is no longer required. RAM, ROM, Graphics Card RAM, cache and Solid Solid-state secondary storage does not have any moving parts. Solid state secondary storage
o= registers are common examples of primary storage devices St stores data using circuit chips. they are sometimes called flash drives. E.g. USB drives/SD
O)) :) Cards/SSD Drives
: This can speed the computer up since there is less need for virtual
Increasing RAM memo
U) i 5. Considerations for the Most suitable Storage Device
2. The Need for Virtual Memory
Capacity How much data needs to be stored?
— Definition of | A temporary storage space taken up on a secondary storage device (e.g.
q) virtual hard disk) to allow more space for running programs and data than can fit in Speed How quickly can the data be stored? How quickly does it need to be read?
i il RA
; memory primary storage (RAM) Portability Does the device need to be transported? Are weight and size important?
: Open applications/data that are not in current use are 'paged' out to the
D) Use of virtual : i . Reliability Is it mission critical? Will it be used over and over again?
memory secondary storage. When they are needed, they are 'paged' back into
Q primary memory Cost How expensive is the media per byte of storage?
Advantage | Having virtual memory available allows a computer to run more programs at
E of virtual the same time, or to run larger programs; or to work with much larger 6. Typical uses
ts of data th Id fit in the pri i i RAM
O memory amounts of data than could fit in the primary storage (main memory /) Optical Read only distribution on a large scale (CD/DVD). Relatively small capacity
Disadvantag | It is relatively slow compared with RAM. The need to page data in and out of M i High d e bl fast. L Cloud ¢
< > e of virtual [the secondary storage device slows down the computer. It can also lead to agnetic igh data capacity. Reasonably fast. Low cost. Cloud sforage on server farms
memory ‘disk thrashing' Solid State Low power. Small. Rugged. Silent. Very fast. Medium data capacity

Computer Science

+ Provide an interface betwaen the

user and computer

» Features include Memary
management, Rasource
management, File managemant,
Input Output Management, Interrupt
management, Utility saftware,
Security, User interface

+ A set of instructions used to solve a
set problem.

+ Inputs must be clearly defined.

« Must always produce a valid output.

Must be able to handle invalid inputs.

* Must always reach a stopping
condition.

+ Must be weall-documented for
reference.

» Must be weall-commented.

+ Tha operating system schedule procassor time batweean
running programs.

Thase are known as jobs and held in a queus.

» Pre-emplive scheduling routines actively start and stop jobs

» Mon pre-emptive routines start jobs then leave them to
completa

Round Robin Routine

Each job is given a ime slice of processor time to run in.

« When a job has used up it's time slice it is returns to the start
of tha queus and receives another.

This repeats until the job is completa.

First come first served routine

+ Jobs are processed in the order they entared the queus

Multilevel feedback queue routine

ORGANISER

Haggerston School

« Computers often need more mamory
than is available and so must efficiently
manage the available memory and share
it between programs.

Paging

* Memaory is broken down into equal sized
jparts called pages.

+ Pages are swapped between main and
wvirtual memory.

Segmentation

* Memaory is split up into segments.

« Segments can vary in size.

* These segments represent the logical
flow and structure of a program.

Virtual Memaory

+ Part of the hard drive can be used as
RAM.

« Access is slower than RAM.

» Paging is used to move sections which
are not in active use into virtual memory.

A signal generated by hardware or software
to tell the procassor it needs attention.

» Have different pricrities.

« Stored with a priority queus in an interrupt

ﬁ' star.

« At the end of the fetch, decode, execute
cyche the interrupt register is checked.
« If there is an interrupt with a higher priority
than the current task:
o Tha confents of the registers are
transferred into a stack .
= The appropriate (ISR) is loaded into
RAM.

o Aflag is sef, noting that the ISR has
bagun.

= The flag is reset when the ISR has
finished.

o This process repeats until no more
interrupts exist.

* A software implementation of a virtual computer

« Intermediate code is halfway between machine code
and object code.

It is independent of process architecture allowing it to
run across different systems.

« It takes longer to exscute

« Virtual machines can be used to halp protect from
malware, test software, or run software with different
warsions or OS requirements.

Used by an and user o perform a spacific task.
» e.. word processor or web browsar

» Manages computer resources to maintain

arating system or device driver.

Has a specific function to maintain OS5 performance
+ 8. backup or compression softwara

Uses multiple queuss, each with a different priority applicatians + Covert source code into chject code. Lexical Analysis - .)
Shortest job first routine Multi User Compiler + Comments and whitaspace OSaVBGﬂ‘_ﬂ time and effort associated with developing
+ Tha queue is ordered by the amount of processor tima « Several users can use a single » Translates code all in one go. removed and testing code o perform the same task over and
needed. computer « Compilation process is langer. + ldentifiers and keywords over again.
» Tha shortest jobs are completed first. + A scheduling algorithm allocates # Produces platform specific coda. with tokens
Shortest timo romaining rautine Processor tina boueen oo < Compied cods can berun wihout 3 “Tokenmosiorena | [N Waya 6o Addrass MamoRy
+ Tha queue is ordered based on the time |eft to completion. Real Time translator. symbal table « Machine code comprises an operand and opcode.
» Jobs with the least time needed to complate are finished first + Performs tasks within a guaranteed Interpreter Syntax Analysis « Oparand is the value relating to the data on which the
Advantages Disadvantages time frame » Translates and executes code line by line. * Tokens checked against instruction should be parformed.
Round All jobs are Longer jobs take much « Used in time critical systems. « Will error if a line contains an error. language rules « Opcode holds the instruction and the addressing
Robin aventually Ingar. » Slower to run than compiled code. + Flags syntax errors moda.
attended to. | Takes no account of priority. S mes Ga:fa isf;lelﬁ:m independant. 'ms!m Tree « Tha addressing made is how the operand shauld be
i » Usaful for testi =
Eﬂ Come _'EI::; o - Takes no account of priority. « Basic Input Output wr::t i ' esting. setion M.:mllmu
Served : 2:: ;::;:m; . m"i‘"més"" * Assembly code is platform specific, low * Machine code produced » Immediate Addressing — The operand is the value
Multilevel | Considers job | Tricky to implement into level code.) using Abstract Syntax Trea itself and the instruction is parformed on it
Feadback | priority. . m"fon" "'M" Tost (POST) mekes « Translates assembly code to machine Optimisation « Direct Addressing — The operand provides the
Shortest | Warks well for | Requires additional auare gl harsdorrs I Gonnecied and code. 'm“:{“‘m“““ address of the value the instruction should be
Jab First batch systems | processar time to order the funvctional + 1line of assembly code = 1 line of . ime consuming part performed on.
quaue _ . Tm'“hnm"“ CPU and extemal machine code. * Removes redundant coda. « Indiract Addressing — The aperand holds the addrass
Takes no account of priarity. devices. - Memary of a register. The register holds the addrass of the
Shortest Increased Requires additional . N n data.
Time throughput | processar time to arder the . ﬂﬁ;u‘%ﬁ;:ﬂ ﬁmﬁ:ﬂ' hardwane » Indexed Addrassing — An index register stores a
remaining quaue certain value. The address of the operand is found by
Takes no ascount of priority. adding the index register and the operand.

- Types of Operating System

Distributed

+ Runs across several davices

» Spreads task load across multiple
computers

Embedded

+ Built to parform a specific small task

+ Built for a specific davice and
hardwara

+ Limited functionality

+ Less resourca intensive

Multi Tasking

» Allows mulfiple tasks to be completed
simultaneously

Uses time slicing to switch between

code.
Mo licensa reguired to use.

Provided along with the source

Meeds a license to use.
Source code is not available.
Protected by Copyright

Free.

Online, frea, community support
Many individuals will wark on tha
code meaning it is of high quality.

The company provides
support and decumentation.
Professionally developed.
Mare secure.

Reqular updates

documented.
Variable quality coda.
Less sacure.

Mot always well supported or

Code cannot be customised
to meet user neads.
License may restrict use.
Mare expensive.

= Link extarnal modules and libraries used in the code.

+ Static linkers copy the library code directly into the
fila, increasing its size.

» Dynamic linkers just add the addresses of the module
or library.

|

= Provided by the OS to fatch the library or module from
the given locaticn in memory

+ Libraries include pre compiled, error free, code which
can ba used within other programs

» Comman functions can quickly and easily be reused
across multiple programs

Haggerston School

ORGANISER

« Lack of flexibili) . * One level up from machine code.
MAnage « No risk malys:? Static, low-risk * Low level language. An aoile
«Clearl « Limited user projects with « Uses abbraviations for machine code called mnemanics. *An agile model. i
¥ : little user input. o Pracessar specific. « Development team includes developers and user representatives.
documented invalvement « One line in assembly language equals ana line in machine code. + The system requirements are based on “user stories”.
« Produces highly usable software and high quality code.

«Flexible to medium P work than 40 h week.
changing +Poor) projects with Add the value at the memory address to the : Har?-gr;“pr“::;m hh:ﬂq?n:’dmumnﬁmr
requirements documentation unclear initial ADD Add wvalue in the Accumulator

lar user input requirements. Subtract the value at the memaory address from ; L . ;
. Small to suB Subtract | the value in the Accumulator * An iterative methodology. » Used for high risk
. . sHighcostastwo | o Stare the value in the Accumulator at the » Uses partially functioning prototypes. | projects.

« High quality code people are projects with STA Shore mermory address « Users trial a prototype. » Has four stagfas:

» Constant LI':“ ;ﬂd&d . unclear initial Load the value at the memory address to the » Focus groups gather user 'A“ﬂh’ﬂﬂaf;q"ll'ﬁm:;ﬂt&
involveme « Teamwork is) requirements. «Locate mitig

. * ents LDA Load Accumulatar N -
means high ess fﬂq:::‘“ Allows the user to input a value to be held in «This informs the next | ype. riska.
usability = User needs to be ri::sllanstl NP Iput the Accumulator = This cycle repeats. « Develop, test and
present & o » Used where user requirements are implement.
usability. out Output | Prints the value in the Accumulator unclear. « Evaluate to inform the

':nh:ﬁfh risk- » Expensive to hire HLT Halt Stops the program at that line » Code may be inefficient. next iteration.

»Caters to ik esaors Large, risk- Creates a flag with a label at which data is » The project may be
changi slack of focuson | 9o DAT Data stored. terminated if it is

ging user code effici intensive - - - deemed too risky.
nesds - ENCY | projects with a Branchif | Branches to an address if the value in the » A collection of mythologies. calist rick

« Prototypes = High costs due high budget. BRZ zero Accumulator is zero. A conditional branch. « Aimed to improve flexibility. * Specialist risk assessors
produced to mnsh?nt Branchif | Branches to a given address if the value in the » Adapt quickly to changing user aren -
throughout prototyping BRP positive | Accumulator is pasitive. A conditional branch. requirements.

« Caters to Branch Branches to a given address no matter the value « Sections of the program are » The stages are
changing » Poorer quality Somall BRA abways | in the Accumulator. An unconditional branch. developed in parallel. completed in order.
requirements documentation all i « Different stages of development can | » The clear structure

« Highly usable « Fast pace and medium, low- be carried out simultaneously. makes this model easy
finished product | late changes budget projects » A prototype is provided early and to follow.

= Focus on core may reduce mﬂ'lf short time- improved in an iterative manner. = Changes mean that all
features, reducing | code quality s « Low focus on documentation. stages must be revisited.
development time » High focus on user satisfaction. « User involvement is low.

« Simple to implement. + Class — a template for an ohject. Defines the behaviour and state of
« Applicable to many problems. the ohject.
» |5 not suited to every problem. + State — defined by attributes giving the cbject’s properties.
« Uses traditional data types and structures. + Bahaviour - defined by the methods. Describes the action an object
Structured Programming can parform.
+ A subsection of procedural programming + Instantiation — using a class to create an object.
+ The flow is given four structures: sequence, selection, + Object - an instanca of a class_ Classes can create muliiple objects.
iteration and recursicn. » Setter — a method which sets the value of an attribute.
» Getter - a method which refrieves the value of an attribute.

» Constructor method — Allows a new object to be created from a
class. Every class must have ane.

Computer Science

Advantages # Inheritance - process where a subclass will inherit all methods and
« Rausabla attributes of a suparclass.

«» Code is more reliable + Polymorphism — allows objects to behave differently depanding on
» Code is easy to maintain and update their class.

» Classes can be reused, saving time and effort + Overloading - avoiding a method by passing different parameters
Disadvantages ta a method.

« Requires an alternative style of thinking + Overriding - redefining a method to allow it to produce a differant
» Mot suited to every problem output or function differently.

Mot best suited for small ms

FORM ORGA

1.2 Software and software development

0
O
-
O
O
n
| -
O
——
>
Q
S
O
O

Hierarchy of software
Application Software
General purpose Software - Software that is designed to be widely used in many
ways for both business and personal use (eg applications such as word processing,
presentation software, spreadsheet, and web browser).

Specialist Software - Software that is developed for a specific use or for a
specific business, scientific, or educational area. For instance, air traffic control
systems and stock control systems would fall under this category.

Bespoke Software - The is tailor made software that is developed for a specific
organisation or client. Bespoke software is expensive but meets the specific needs
of an organisation.

System software

System software is concerned with the running of the computer. Its purpose is the
control the computer hardware and manage the application software.

Program translators allow programs to be translated into machine code so that code
can be run on a computer. Translators include interpreter, compiler and assembler.
Libraries are collections of prewritten code that can be used in software projects. Thee
libraries significantly speed up the development process. Libraries can be reused across
multiple applications.

Utility programs are applications that help with the running of the machine.

Common utility programs include:

Auto backup and restore: Incremental backup is useful because only files that have
changed or been added since the last full backup needed to be backed up.

Anti-virus: Scans the computer to identify malicious code

Firewall Scans input and output packets and prevents malicious packets accessing the
computer.

Disk defragmentation: Organises files on a disk to be located contiguously. Often after
defragmentation performance is improved because a file can be accessed from one
location on a disk. Files can become fragmented when the original file increases in size
and no longer fits into a contiguous location and has to be split over multiple locations.

NISER

Hardware is the physical components
that make up a device or computer
system. These include both the internal
components (eg motherboard, CPU, RAM)
and also peripheral and
devices such as printers and routers.

networking

A computer system has both hardware and software.

Haggerston School

Software is the computer code, programs
and algorithms that give instructions to
the hardware to make it perform the
desired task. Without the software the
hardware will not get any instructions and

it will not do anything.

The role of the Operating System

e The most important piece of system software is the operating system.

e The operating system is system software with the role of managing the hardware
and software resources.

e The OS handles management of the processor, memory, input/output devices,
applications and security.

e The OS hides the complexity of the hardware from the user and provides a user
interface.

Application management - Application software does not need to concern itself
with interaction and complexities of managing the hardware because this is dealt with
by the operating system. Application software needs to run on top of operating system
which takes care of interaction with the hardware resources.

Processor resources - Allows multiple applications to be run simultaneously by
manages the processing time between applications and cores and switching
processing between applications very quickly. Multiple applications will access the
processor resources via a schedule that alternates processing between applications.
High priority applications will have more CPU time, but it means that lower priority
applications will take longer to run.

Memory management - The OS distributes memory resources between programs and
manages transfer of data and instruction code in and out of memory. Ensures that
each application does not use excessive memory.

Input / Output devices - The OS controls interaction with input (eg keyboard) outputs
(eg. Monitor) and storage (eg hard disk) using hardware drivers. Allows users to save
files to the hard disk for instance.

Computer Science

FORM

+ The process of designing a relational
database.

= Aims to produce the best and most effective

design.
MNormalisation Considerations

+ Remove redundant or duplicated components.
« Ensure data in linked tables is consistent.

= Allow complex queries to be carried out.

» Ensure records can be added or remowved

without problems.
First Normal Form

= Attributes may contain a single value only.

Second Mormal Form

#In First Mormal Form.

» Partial dependencies are not allowed.
Third Mormal Form.

#In Second Normal Form.

= Non key dependencies are not allowed.

ORGANISER

= A lossless

compression

method.

+ Repeated values
are replaced with
a single instance
of the value and
the number of
times the value
OCCUrs.

« It relies on all
consecutive
pieces of data
being the same.

= It offers poor
reduction in file
size if there is litthe
repetition.

= Ensures consistency.

» Ensures that information is not
removed if it is needed elsewhere in
the database.

Transaction Processing

= A single operation executed on
data.

+Must be processed in line with ACID

ACID

= Atomicity, Consistency, Isolation,
Durability.

= Atomicity - the whole transaction
must be processed.

= Consistency - transactions must
maintain the referential integrity
rules between linked tables.

= |solation - executing transactions at
the same time must produce the
same result as if they were executed
one after the other.

= Durability - when a transaction has
been executed it will not be undone.

Record Locking

= Prevents records being accessed by
more than one transaction at the
same time.

+ Prevents inconsistencies and data
loss.

» Can result in deadlock

Redundancy

= Multiple copies of the data are kept
in different physical locations.

= |f data in one copy is lost or
damaged it can be retrieved from
another copy.

» SELECT - returns fields from a table.

» FROM - specifies the table or tables.

» WHERE - specifies the search criteria.

= LIKE - used to specify wildcard criteria in conjunction with
the % character.

+ AND, OR - match more than one criteria.

» JOIN - allows rows from multiple tables to be returned
and defines how the tables are linked

* [NSERT INTO - inserts a new record in an existing table.

» DELETE - delete a record from a table.

+ DROP - delete an entire table.

SELECT Customerlame, Address FROM Customers
WHERE Customertame LIKE '%Smith%’

SELECT Customerlame, Address FROM Customers
WHERE Customeriame LIKE "$Smith%" AND
CustomerAddress LIKE ‘%Roadi’

SELECT Orders.OrderlD,
Customers.Customeriame, Orders.OrderDate
FROM Orders

JOIN Customers ON
Orders.CustomerIb=Customers . CustomerID

INSERT INTO Customers (CustomerMame,
ContactMame, Address, City, PostalCode,

Country)
VALUES ('Cardinal', '"Tom E. Erichsen’,
'Skagen 21', 'Stavanger', "400&8", "Norway')

DELETE FROM Customers WHERE
Customerlame="Alfreds Futterkiste'

DROP TABLE Shippers

quickly

» Stores the position of each record .

when records are ordered by a

certain attribute.

= The primary key is automatically .
indexed.

= Allows data to be found and accessed .

= There are many ways to capture the
data needed for a database.

» The most appropriate way will depend
on the type and quantity of data .
needed and available resources.

= Data may be manually entered by a .
human or scanned in using optical
character recognition, sensors or .
barcodes.

Haggerston School

Data may be selected based around set criteria
Only data matching the criteria is input to the
data

S0QL can be used to sort, structure and filter the
data

Data may need to be transferred between
systems or organisations

This is know as data exchange

This can be accomplished using EDI (Electronic
Data Exchange)

One to One = Each entity can be associated
with one other entity onky.

One to Many = A single table many entities in
another table.

Many to Many - Many entities in one table are
linked to many in another table.

= An entity is item about which
information is stored such as books,
or customers.

= Attributes are the categories in
which data is collected such as
height or name.

Flat File Database

= Consists of a single file.

= Usually based around a single entity.

» Only one table.

Relational Database

»Uses many tables to store data
about different entities.

» These tables are linked together.

Primary Key

= A unigue identifier, different for each
object in the databasa.

= Usually and |D number or ather
unigue ID.

Foreign Key

= Used to link two tables together.

» The primary key from a different
tabla.

Secondary Key

= Used to enable searching or sorting.

= Usually a common field like name.

»Turns an input into a value of a
fixed size.

= The input is known as a key.

= The output is known as a hash.

»The hash cannot be tumed into
the key.

= A hash table stores keys and
their matching values.

= They can be used to lookup data
inan array.

= They are used in situations
where lots of data needs to be
looked up in a constant time.

= Algorithms which perform this
task are called hash functions.

= The output of a hash function
should be smaller than the input.

» |f two inputs produce the same
hash this is known as a hash
collision.

= Lsing a second hash function
and storing items together with
thi hash helps to overcome
collisions.

»Good hash functions are quick
to run and have a low rate of
collision.

. Encryption

»Used to keep data secure.

» Used whan transmitting or storing data in
ways where others may have access to it.

= Scrambles the data to prevent it being
easily read.

= Encryption keys are used to encrypt and
decrypt data.

Symmetric Encryption

» The same private key is used by the
sender and receiver.

*The same key is used to encrypt and
decrypt data.

= A key exchange process is used to share
the kay.

» Data can be read should the key be
intercepted.

Asymmetric Encryption

= Uses two different

*The public key is used to decrypt data
and can be shared anywhere.

» The private key is used to encrypt data
and must be kept securaly.

= The two keys are known as a key pair
and are related to each other.

= Encrypting a message using the public
key verifies that it was sent and

encrypted by the owner of the key.

= & lossy compression method.
= Commonly used data is replaced with an index.
» The compressed data is stored with a dictionary.
» The dictionary can restore original data.
» The dictionary links the commonly used data to
the index.

s Search a database of web addresses to find resources based on

criteria set by the user.
= Rely on an index of pages through which they search.

+Web Crawlers build the index by traversing The Internet exploring all

links on the page.

» Crawlers collect keywords, phrases and metadata from pages.

Computer Science

Bus MNetwork

All devices are

connected to a single

cable (called the bus)

A terminator is at each

end of the cable.

Advantages:

* [Easy to install extra
devices.

* Cheap to install as it
doesn't require
much cable.

Disadvantages

= [f the cable fails or is
damaged the whole
network will fail.

* Performance
becomes slower ad
additional devices
are connected due
to data collisions.

= Each device
receives all data, a
security risk

2e e

L

- T

Cliant Sarver Network

« Clients connect to a central server.
+ The server is a powerful computer central

to the network.
« It holds all the data.
+ More secure setup.

« Clients do not need to be backed up.
+Data and resources can be shared easily.

« Expensive to setup.
+ More secure.

Proxy Server

= Sits between a user
and the resource they
are accessing.

= Protects users'
privacy.

= Caches frequently
accessed websites to
increase performance.

» Reduces web traffic.

= Uses rules to block
access to sensitive
information.

ORGANISER

Natwork Topologies

Star Network
All nodes are connected to

one or more central switches.

Often used with wireless
networks.
Advantages:

* Every device has its own
connection so failure of
one node will not affect
others.

= New devices can be
added by simply
connecting them to the
switch.

* Usually have higher
performance as a
message is passaed only to
its intended recipient.

Disadvantages:

® [f the switch fails it takes
out the whole network.

* Requires a lot of cable so
can be expensive.

v 2o

Mesh Networks

Mo central connection point, with each

daevice connecting directly to others.

Full mesh networks have every device

connected to every other devica.

Partial mesh networks have each

device connected to several others but

not necessarily every other device.

Advantages

* Messages can be received more
quickly.

* Messages have many possible
routes they can take.

» Multiple connections mean that no
device should be isolated

* Each device can talk to more than
one node at the same time.

= Devices can be added without
interruption.

Disadvantages

= Can be impractical and expensive to
setup.

» Require a lot of maintenance

Netwaorks

+ A network is two or more computers connected
together for the purposes of transmitting data.

* The physical topology defines the physical layout
of the netwaork

* The logical topology defines the way data flows
through the network

+ A protocol is a set of rules for communication
between devices.

» They allow devices from different vendors to
communicate

« A LAN (local area network) covers a small
physical area.

« A WAN (wide area network) covers a large
physical area.

Haggerston School

Internet Protocols

TCP/IP Stack

» Transfer Control Protocol / Internet Protocol.

+ A group (stack) of protocols which work together.

= Controls the flow of data packets through the network.

DNS

* Domain Name System

» Allows websites and other network devices to be identified by a human
readable name.

* DNS Server converts the name to an IP Address.

» A hierarchy.

» Each domain name is separated by a dot.

» The names to the right are highest in the hierarchy.

Application Layer

= Top of the stack.

» Specifies the required protocol needed by the application the user is
using.

Transport Layer

+Uses TCP to establish a connection through the network between the
source and recipient devices.

« Splits data into packets labelled with a packet number.

» Requests retransmission of any packets lost during transit.

Network Layer

+ Adds a source and destination IP Address to packets.

+ Routers use this address to forward packets through the network to their
destination.

Link Layer

» The physical connection between devices.

»Lises a MAC Address to communicate.

Q\“u

Pear to Pear Network

« Computers are
connected directly to
each other.

= Computers share data
with one another.

« Quick, cheap and easy
to setup.

» Less secure.

» Easier to maintain.

PageRank Algorithm

= Ranks each web page

» Higher ranked pages appear first whan
results are shown.

» Rank based on the number of incoming
links on the page and the rank of these
pages.

» This is stored in a directed graph.

= The sites are nodes and the links
between the pages are the arcs.

PageRank(x) = (1-d) + d[(PageRank(T1) +

Count{T1)} + ... + (PageRank{Tn) +

Count{Tn)]

Comprassion

+ Reduces the space
needed to store or
transmit a file.

= Important when
sharing files aver a
network or The
Internet and when
dealing with limited
storage space.

o Increased the number
of files which can be
sent or received.

+ Lossy compression
removes some
information whilst
compraessing the file.
Criginal cannot be
retrigved.

» Lossless compression
reduces the size of the
file without losing any
information. Original
can be retrieved.

Network Hardware

NIC

= Network Interface Card

= May be wired or wireless.

= Allows a device to connect to a network.

» Has a unique MAC (Media Access Control) address
assigned to it

Switches

= Conirols the flow of data through the network.

» Used in star topologies.

Wireless Access Points (WAPs)

» Allows devices to connect wirelessly to a network.

» Used in mesh networks.

» Often used with a router to allow devices Intemet
ACCess.

Routers

= Used to connect two or more networks together.

» Often used between a home/office network and an ISP
to allow Internet access.

Gataway

= Used to connect networks using different protocols.

« Translates protocols to allow devices to communicate.

» Changes the packet headers.

LANs and WANs
+ LAN - Local Area Network — covers a small area.
» WAN - Wide Area Network - covers a large area.

Unit 1.3 Exchanging Data Page 2

Packat and Circuit Switching

= Packet Switching

= Data is gplit into packets.

= Packets are sent across the
netwaork.

= Packets may take different
routes through the network.

» Circuit Switching

= A direct link is created
between devices.

* The link is maintained for the
entire conversation.

* Both devices must transfer
data at the same rate.

Firawalls
» Prevent unauthorised access
to the network.
» Has two NICs.
« Data enters one NIC and is
compared to a set of rules.

= Traffic which matches the rules

is passed out the other NIC.

Server Side Processing

« Client sends all data to the
sarver for processing.
Examples include SQL and
PHP.

» |t requires no plugins on the
client.

« Servers can usually perform
large or complex calculations
more quickly.

= |t iz not browser dependent.

=t i3 more secure

Client Side Processing

» Client processes the data
locally.

= Examples include JavaScript.

* Web pages can immediately
respond to actions.

» Code executes more quickly.

» It gives more control over the
behaviour and look of
websites

Haggerston School

ORGANISER

. simplify Boolean expressions v
« Shifts on binary numbers are called logical shifts. » Can be used for truth tables with ;:'r‘:m xﬂ:ﬁtﬁmm
» May be a logical shift left or logical shift right. betwean two and four variables \Written as AND or
+ Move all the bits of the number a specific number » Values in columns and rows must be -
of places laft or right. - writlen using grey code
» Involves adding a number of zeros at the beginning + Columns and rows only differ by one
or end. bit
» This gives a multiplication for left shifts and division 1) Write the truth table as a Karnaugh
for right shifts by two to the power of the number of Map
places shifted. 2) Highlight all the 15
» Moving one place will double or halve the number. 3] Only groups of 1 with edged equal 0 0 0
Masks to a power of 2 may be highlighted o 1 0
4] Remove variables which change
. WW numbers with a logic gate such as within the highlighting 1 0 o0
» May multiply or otherwise change the involved 5] Keep variables which da nat change 1 1 1
numbers.
OR - at least one condition must be
miat for the statement to be true
Written as OR or +
o
Data____ Structures -
Records Graphs Intagar « A method of recording the values used within an algorithm at o
q) # A row in a fila or table » Notes connactad by edges or arcs. » A whale numbear each stage of processing to help in troubleshooting
+ Widely used in databases + Diracted graphs allow edges to be » May be positive, negative or 0 « Tasts algorithms for logic errors which ocour when the
O = Made up of fields traversed in one direction only. = Cannot have a fraction or algorithm is executed. 0 o 0
Lists + Undirected graphs allow edges to be decimal point + Simulates the steps of algorithm. o 1 1
» A number of items traversed in both directions. » Often used for counting » Each stage is executed individually allowing inputs, cutputs, 1 0 1
C ltems can occur more than once « Welghted graphs attach a cost to each objects variables, and processes to be checked for the correct value 111
« Data can be of more than one data type Iamplamamedmhg i »24.5,-1,0,10 at each stage.
Tuplas =i an adjacency list or Real » A greal way to spot errors .
q) -l; orderad set of values adjacency matrix. + Positive or negative number Stage | X |Y | Output NOT - '"m the result, e.g. NOT(A
.— » Cannot be changed once initialised » Adjacency matrix - easy o add nodes » May have a decimal point 1 _[3]1 AND B) will only be falsa when both
« Initialised with regular rather than square and to work with. » Often used for measurements ¥ =3 3 7 Aa_nd B ara frua _
O brackets « Adjacency list - space efficient. »e.g.5,-10, 100.556, 152 ¥ =1 3 3 Written as NOT or
Arrays Trees Charactar while ¥ > 0
« An ordered set of elements, each of the « Connected graphs with root and child « A single symbol r=y+1 4 3
(f) same lype. nodes. « May be a letier, number or X¥=x=1 3 1 a a
» A 1D array is like a list. = A nole is an item in the tree. character print(¥) 6 4
* A 20 array is like a table. = An edge connects two nodes together. + Uppercase and lowercase 7 0
» A 3D array is like a mulli page spreadsheet. | *A roofis a node with no incoming latters are different characters 8 3
— + 2D arrays are searched first by the rows nodes. 00 A a5 M"@ 1 0
and then the columns. » A child is a node with incoming edges. String a1
q) Linked Lists = A parent is a node with outgoing edges. » A collection of eharacters
» Dynamic data structure. + A subtree is a saction of a tree » Can store one or many strings * Maximises the precision Boolean Oparations XOR - Also k Exclusive OR.
- + Stores an ordered list consisting of a parent node with child « Often used to contain text in any number of bits. » Boolean operators can ba wm;m:ﬂ now as Q;HW e
» Contents need nat be in contiguous data nodes. * Leading Os are not timmed so = Adjust the manlissa so combined to form Boolean) same 25 an OR gats,
3 locations. » A leal is a node with no child nodes. useful for storing phone that it begins with 01 for equations will output 1 only if one or the other
« ltems are called nodes. » & binary iree is a tree where each node numbers positive numbers and 10 « This follows the same way and not both inputs are 1.
» Each node contains a data field and a link has two or fewer children. Boolean for negative numbers. as combining standard Written as XOR or &
Q or pointer field. » Binary trees store information in a way » True or False only maths operators o
« The data field contains the data itself. which Is easy Lo search. » The equation can be
« Th pointer feldcontains the address of [+They ofen sire each node wit 2 e represenied by a ruth table o
E the nad item. and right pointar. » Use Two's Complement. = Somatimes a long a
« Use the same rules as adding expression can share a
2 nogaive umber. e i ashorer
@) » Each binary digit is called a bit « Use binary addition with a 20+0=1 expression 000
+ Eight bits form a byte negative twa's complement w0+1=1 * |t is better o use the 01 1
» Faur bits (half a byte) is called a nybble number. o1 +1=10 shorter version. 01
+ The most significant bit is furthest left s1+1+1=11
O « The least significant bit is furthest right 1.1 0

Computer Science

1.4 Data types, data structures and algorithms

FORM

Data Structures
Static data structure
This is a fixed block of memory that is reserved at the start of the program.
This is a contiguous space on disk. The next memory location is the next
address and its position can be implied, so there is no need to explicitly point
toit.
0 1 2 3 4 5

Suppose we want to remove the ‘u’. This is not easy for static memory
location because we must move all the succeeding elements up one place.

0 1 2 3 4 5 0 1 2 3 4 5
(565 o 15 s [
Dynamic Data Structure

Dynamic memory allocation is where memory is allocated and deallocated
during the running of the program. The memory is allocated on the heap. The
heap allows random allocation and access of memory. dynamic memory

allocation uses linked lists where each element points to the address of the
succeeding element.

- D - T -

To remove an element just requires pointing to a different address

A addrz G € addr3 ':"’

Conversely to add an element just requires pointing to that address

- K- T -

Terminator

ORGANISER

Abstract Data Types: Abstract data types allow us deal with the operations and behaviours of a data type and not to be
concerned with their operation which is abstracted away.

Haggerston School

Disadvantages

contiguous position in memory

Advantages
i Memory locations are fixed and can be
Static data . : .
accessed easily and quickly and are in a
structures

Memory is allocated even
when not is not being used

Dynamic data |that is needed.

structures

remove and add element.

More flexible and more efficient than static
data structures because we only use memory

Uses linked lists and makes it much easier to

Data structure may be
fragmented so can be
slow o access.

Stacks

Stacks are a last in first out file system just like
the stack isd the first to be retrieved.

| b

el

ane element Second element elemant popped
Empty stack o v off siack
anto stack oo stack

Uses of stacks:

a stack of plates. That is the last item added to

Stack operations:

push: add element to the stack

pop: remove element from the stack

peek/top: view the top element on a stack
without removing

isEmpty: test to see if stack is empty

isFull: test to see if stack is full

o Can reverse a sequence of numbers by popping a value from o ne stack and pushing to

another
e Used in Reverse Polish Notation
o Stack frames used in subroutine calls

Queues

A queue is a first in first out data structure.
Typically queues are used in buffering where a
sequence of instructions are sent to a printer
for instance, and the printer prints of the
document in order in which the instructions
arrived. Lists can be used to represent queues.

Queue operations:

Add: add element tot he end of a queue
remove: remove element from front of queue
isEmpty: test to see if queue is empty

isFull: test to see if queue is full

Haggerston School

ORGANISER

FORM

1.4 Data types, data structures and algorithms

Linear Queue
As an item is removed from the o 1 3 3 4 5
queue all the other items move
up one space. For a long queue

A graph is a way of representing the
relation between data. A graph is made Al
up of vertices/nodes that are
connected by edges or arcs. This could

¢ MNodesfvertices

. . , Aresfed
. . . =~ . F Figure 1
'I;\lnear.?ueu.e using p(()jlr;ters " o 1 2 a P 5 A - . ic)
s an item is removed from the }
IR e T T pe—— m ’ Graphs do not need to be connected. this is a
the start of the queue also o . Vel gl
{E p -
moves up. We need to know o 1 3 3 4 5 F)) 3 —
the length of the queue and : oS~ Lc)
how many elements have been [EETINRIRINIINIIII] weighted graph ; (8) ;
q) removed. The problem Weighted graphs add a value to an arc. y VAN 13
with this method is that we end up with a lot of empty cells in memory that This might represent the distance . /5 / 10
O are now unused at the front of the list. between places or the time taken I.‘_.I# o {E H‘u;._.{'
- Circular queue: I between train stations. 16 Figure 2 IMIF..-._I
In a linear array when items are removed pa
()] removed from the memory location those 1 Front pointer Adjacency Matrix with no weighting A B € D E F
— memory locations are allocated but are no 0 » Graphs can be represented as adjacency matrices A - 1 - |1 |- |-
O longer used. Circular queues get around this 7 l e Graphs with no weights are given a value of 1 for B 1 - 1 - 1 1
problem by ‘'recycling' these memory connected nodes 'E ; 1 N - _1 1
(f) locations at the back of the queue. . | ey MR wefia i £ : 1 : 1 : :
Priority queue: A B C D E F F |- 11 1]- - |-
— Each element is assigned a priority. Highest A - 21 - 3 - - . . . o
() priority items are removed first. If elements % 2 B 21 - 9 - 5 12 Adjacency List with no weighting
+— have the same priority then the item nearest C - 9 - - - 10 A [D, B]
the front 4 E] o 3 - - - 16 - B AECF
> of the queue is removed first. So in this case O would be removed. E - &) - 16 - - [L]
F - 12 10 - - -
(ON Printer , c [B, F]
Alternatively, the queue could
E -'v store items in priority order and D [A, E]
the item removed from the front . .
0 1 2 3 a 5 . . Graphs can also be represented as adjacency lists. E [D Ei]
O of the queue as with a linear . . . r
Adjacency list for figure 1
ueue.
@) q F [B, C]

Haggerston School

FORM ORGANISER

1.4 Data types, data structures and algorithms

A binary tree for a sequence of

Binary Tree .
Adiacency List with weightin A {D:3, B:21} e In a binary tree a node can only have a numbers: 10,1,17,4,8,11,14,16,5,12
! A/ = = B {A:El' 5, L5, F:ll} maximum of two child nodes 1 < 10, therefore we 10 17 » 10, therefore we
Graphs can also be represented as adjacency € 18:9, F:10} « A binary tree can be used for sorting a """ T branchtotheright
lists. Adjacency list for figure 2 e {A:3, E:16) sequence of numbers (1) (v)
E 1D:16, B:5} e The first number is the root node —~
~ F iBaes G lo e If the number is smaller than the node then) M
;'ﬁ' — L) Directed graphs we branch left, if it is bigger, we branch right et N
/ B i - Undirected graphs have . A
"N / connections in both directions. Tree data structure —~ AB) L
y Directed graphs only apply in ¢ We can represent a tree data structure with) -,)
\Dj— —(E) \“~_|_ one direction and are three lists/arrays
"" LF represented with edges with e An array contains the value at the nodes
arrow heads on one end. e An array that points to the location of left child of the node in the values array
Q Directed graph as adjacency list « An array that points to the location of right child of the node in the values array
) 4 Directed graph as adjacency matrix If a node does not have child node then this is indicated with a -1 or null
- B [A,E, C,Fl T S e 1 (10)
LS PR B T ~TTT T
()] c [F] A] » 5 4 T
-— B 1 1 1] s 7 17 2 L 4) : I:. _1?_
D [A, E] From ¢ 4 1 1 3 \
© E D 1 1 = & = - Y e N
) : b)) () i (»)
F F Null pointers
-
q) Trees : Root node / vertex
+ o A treeis a connected, undirected graph with no cycles Edge :
D) e Connected: Every node is connected either indirectly to directly to every Parent node / osonotor,
other node A _ oo,
Q— e No Cycles: There is only one path between nodes :
E e Undirected: can traverse in both directions along the edges chbdnode % chbdmodal
e A rooted tree has a root node that has no parent and all other nodes are A)
O descended from the root. All other nodes can be a parent and/or a child somraro
node. Leaf nodes |
Q ¢ A leaf has no children :

O
O
-
O
O

n
O

—f—
>
Q
S
O

O

FORM

1.4 Data types, data structures and algorithms

Hash Table

Hashing allows stored data to be accessed very quickly without the need
to search though every record. This is achieved by relating the data itself
to its index position using a key. There are several hashing algorithms that
can achieve this.

If the calculated number is bigger than the length of the list then you will
need to apply the modulo

Collisions occur when a bin is already occupied. In such a situation the data
are placed in the next available bin

You can rehash with a higher modulus and number of elements when the
number of collisions become high

The load factor is the number of occupied bins delivered ny the number of
total bins

The hash table should contain more bins than there are elements that you
would like to store by a load factor of 0.75

If the load factor is exceeded, we can rehash using a larger hash table with
a greater number of bins.

Worked Example

Put the numbers 81, 93, 76,
51, 17, 61 into a hash table
with 10 elements. Because
the values are bigger than the
length of the list, we apply the
modulo which is the length of
the table.

Other hashing algorithms

81 MOD 10 - 1 (81 goes into index position 1)
93MOD 10=3

76 MOD 10=6

51 MOD 10 = 1 (a collision has occurred,
place in next available position)

17MOD 10-7

61MOD 10-1

Worked Example

If the data you want to convert has letter and not | et us consider the

ORGANISER

Dictionaries

Haggerston School

A dictionary is an abstract data type. It contains a list of pairs of values with a key that is
associated with a value. We use key to access a value.

dict = {key1l: valuel, key2: value2,
Create empty dictionary id={}
id=

Create a dictionary

{23:"James",25:"Thomas",1
8:"Gordon",32:"Percy"}

Return a value associated
with a key

id[23]->James

Add a value id[33]="Trevor"
List values id
Remove a value del id[32]

Vector Notation
Function Representation

A vector can be represented as a Function (f: S = R) where S is the set that
maps to R. For instance S=[0,1,2,3,4] and R=[4.0,5.5,6.7,9.1,-2.3]

List/1-D array representation

., keyN: valueN}

A
a |
A3
.'\.-:r.. e ‘H.
"' b
*, s
3 J 4
- AY -
. AN
c | od
, # p 4 -

Using a dictionary to represent a graph

g={"a":{"b":5}, "b":{"a":5,"c":3,"d":4}, "c":{"b":3}, "d":{"b":4}}

Vectors

e.g. A 5 vector over R would be: [4.0,5.5,6.7,9.1,-2.3]

Dictionary representation

0—-4.0
1-5.5
2-6.7
3-9.1
4—-2.3

A 5 vector could be represented as a dictionary with both sets and mapping

e.g. R={4.0,1:5.5,2: 6.7,3: 9.1,4: -2.3}

Visualisation of a vector

We can represent a vector as geometric point

numbers, you can convert the data to corresponding following names:
ASCll values. Bart, Homer, Lise,
Homer 72+111+109 + 101 + 114 507 MOD 10 7 Milhouse, Ralk.
Bart 66+97 + 114 + 99 393 MOD 10 3 We have a has
Lisa 76+ 105+ 115 + 97 393 MOD 10 3 (collision) table with 10
Milhouse 898 MOD 10 8
Ralf 389 MOD 10 9 elements.
0 1 2 3 4 5 6 7 8 9
Bart Lisa Homer Milhouse | Ralf

in space. A 2-vector e.g. [3,4] can be
represented by an arrow with its tall at [0,0]
and its head at [3,4]. Vectors have both
magnitude and direction.

(0.0)

(3.4)

magnitude = +/32 + 42

direction = tan™!(4/3)

Computer Science

FORM

1.4 Data types, data structures and algorithms

Vector addition
Each element in the vector is added to the corresponding
value at that element in the other vector.

Worked example:
Find a+b where a =[2, 3, 6, 8] and b=[3, 1, 4, 5]

a=1[2,3,6,8]
+ 4+ + +
c=[3,1,4,5]

a+b =[2+3, 3+1, 6+4, 8+5]
a+b =[5, 4, 10, 13]

Scalar vector multiplication

Vectors can be multiplied by scalars (single numbers).
Each element is multiplied by the scalar

Worked Example

Find 2a where a=[2, 3, 6, 8]

2a=[(2x2), (3x2), (6x2), (8x2)]

2a=1[4, 6, 12, 16]

Dot product

The dot product of two vectors is calculated by multiplying
the corresponding element in both vector and adding
together all the elements. Given vector a and b such that
a=[al, a2, .., anland b =[b1, b2, .., an]

Thena.b=(al x bl) + (a2, x b2) + ..., + (an x bn)
Worked Example

Find a.b where a= [2, 3, 6, 8] and b= [3, 1, 4, 5]
a =[2, 3 6, 8]
X X X X
b =[3 1, 4, 5]
ab =[6+ 3+ 24 + 40]
ab =73

ORGANISER

Convex combination of 2 vectors
Every convex combination of 2 points lines on a line between the two points 2 points.
This has the form au + bvwherea + b=1anda,b >=0

Worked Example
Find the convex combination au + bv of vectors u=[1, 2] and A 3;
v=[4, 3], where a=0.4 and b=0.6 !

au = [1*0.4, 2*0.4]

au =[0.4, 0.8]

bv = [4*0.6, 3*0.6]
bv=1[24, 1.8]

au+bv = [2.4+0.4,0.8+1.8]
au+bv = [2.8, 2.6]

(2.8,2.6)
(1,2)

Angle between 2 vectors
The angle between two vectors is calculated as:
cos(a) =a.b / |a|.|b]

Worked Example

3.4
Calculate the angle between two vectors a=[3, 4], b=[4, 3] 3.4)

ab=(3x4)+(4x3)=24
la|=y/3% + 47 =5 (4,3)
|b|=ya7 ¥ 37=5 _—

24 /5.5=24/25=0.96 = 16.3°

Haggerston School

FORM ORGANISER

2.1 Elements of computational thinking

Thinking Procedurally
Problem decomposition
Decomposition is the breaking down of a complex problem into smaller more

manageable problems that are easier to solve. Each component of the program
completes a specific task. This allows algorithms to be more modular.

Handle Player Stiel mem Word to find
Input

Check if letter Check if all Update when Check if stick Generate Convert to
in array letters found letter not in word man complete random word array

Each 'end of branch' is a module/subroutine to be programmed. This is known as
top-down design. The diagram above is called a hierarchy chart.

Advantages of Decomposition

e Large programs are broken down into subtasks/subroutines that are easier
to program and manage

e Each subroutine (i.e. module) can be individually tested

¢ Modules can be re-used several times in a program or elsewhere

¢ Frequently used modules can be saved in a library and used by other
programs. For example, in C# rnd, sqrt. Having components that have
already been written, debugged and tested will save the programmer time.
e Several programmers can simultaneously work on different modules.
shortening development time

e Programs are more reliable and have fewer errors

e Programs take less time to test and debug

A well-organised modular program is easier to follow

¢ New features can be added by adding new modules

Thinking Concurrently

Parallel Processing

* Requires a processor/CPU with multiple cores

 Each core processes different instructions at exactly the same time
e |mpossible on a single core processor

e CPUs can contain up to 64 cores (and counting)

Computer Science

Thinking Logically
Tools for Designing Algorithms
* Hierarchy charts: Useful for identifying the major task and breaking these down into subtasks
 Flowcharts: Useful for getting down initial ideas for individual subroutines
* Pseudocode: will translate easily into program code

Flowchart Symbols
Programming Structures
» Sequence: one line is executed after another Symbel Name Function
e Selection: if, elif, else; switch, case, endswitch
¢ lteration: while, endwhile; do, until; for, next loops {) Surtiond ot
r r I 14 I p b s
l l * ﬂg:ha"r:;-'&tcﬁlhd
— farguis gy
_‘*Q F P | repeesantative shapes
* - T I‘ If'lll },l'lll pxticiipnd mpum;u or aupLt
) | — |
¥ 5 —
g - . Btk A ciamond indicales @
* ""v/ decision
Selection Iteration Sequence

Programming Errors
e When you first start programming, the most common errors you make will be syntax errors
 Logic errors are another type of error. They occur not because of an error in the syntax, but
instead because you get unexpected results
¢ Logic errors normally occur at points where selection occur (if...else) or at points of iteration

Concurrent Processing
e Happens on a processor with a single core
» The core appears to process different instructions at the same time, but it is an illusion
e Each process is given slices of processor time, giving the appearance that several tasks are being
performed simultaneously
Threads
e A process can be broken down into multiple threads - instructions to be completed one after the
other in sequence
» A single core can cope with two threads simultaneously
» A four-core CPU would have (be able to handle) eight threads (simultaneously)
o Thread can start and end at different times
e Thread can overlap in their execution (fetch-decode-execute)

FORM

2.1 Elements of computational thinking

O
O
-
O
O
n
O
—f—
>
ol
S
O
O

Thread locking

» Sometimes you might have a situation where you don't want threading

to occur

¢ This would be when you don't want two operations to be happening
simultaneously, because it will create a bug or similar problem

* For example, two threads are incrementing a counter, both by one.
The result should be 117, but since they are happening simultaneously,

the outcome is not expected:

o Counter value is 115

o First thread reads the value of the counter from the memory (115)

o First thread increases the local counter value (118)

o Second thread reads the value of the counter from the memory (115)

o Second thread increases the local counter value (116)

o Second thread saves the local counter value to the memory (116)
o First thread saves the local counter value to the memory (116)

o Value of the counter is 116

* In such situations, as part of the code, you can lock threads for certain
operations, preventing this from happening (first operation completes

before the second is implemented)

Pipelining

¢ Involves splitting larger tasks, and overlapping the processing of them
o With regards the CPU, to speed up processing time, while one

instruction is fetched, another can be decoded and a third executed
e Can also relate to, in an algorithm, the output from one procedure

being used for the input for another

Serial

Pipeline

Paralied

ORGANISER

Enumeration

e An exhaustive search for
all possible solutions
until one works

e Also known as brute .
force - testing every
combination of possible
routes until you find the
shortest one

Divide and Conquer

* This involves reducing the
size of a problem with every
iteration

¢ The best-known example is
the binary search, which is a
method of searching a
sorted list for a particular
item

Problem Solving

Simulation

This is where the situation is simulated
to help find the best solution to the
problem

Might require an entirely computer-
based simulation, e.g. to solve
queuing problems

Might required a physical model too.
E.g. fo investigate air resistance on a
model of a new F1 car design

DoooNonn

Haggerston School

Pattern Recognition

e This involves utilising a
database of previously
experienced patterns in
order to find a match

* May take heuristic
approach to find a best
fit

Backiracking

3jzjofs)sjujun| e Backtracking is an approach to a
problem where partial solutions are

e Another is a merge sort

Data Mining and Big Data

e Data mining is the process of digging through
large sets of data in order to (one or more
of); find hidden links and relationships,
recognise patterns and trends and predict
future trends

¢ Big data was a term coined in the early
2000s to describe vast amounts of
information now available to the computing
world

Performance Modelling

coficn i B built up to produce a full solution

W+t 4w o If a pathway fails, some of the
S l: l ‘_"""" | °"'}.['u] |_ =) partial solutions up to that point
2] M8l as| Js are discarded and you start again
(lefala] (=[] from the last potentially successful

TEEERE point
e Same as trial and error or trial and

improvement
Heuristic Methods

o There are often other options for solving
problems apart from brute force methods

e One method is to find a solution which is
likely to be correct, or which is nearly but not
quite, perfect but sufficient, in a reasonable
time frame. This is called a heuristic
approach

¢ It is often important to know how a system will perform in real life before implementing it

* To save money, time and in the interest of safety, models (simulations) are built (physical
and/or computational) to predict what will happen in real life

e It can also be used fo stress-test a program with large volumes of test data before going live.

Haggerston School

ORGANISER

Modularity Programming Constructs

* Large or complex programs can * Sequence — Code is executed line by line from the
be split into smaller self top down.

Variables
= Variables can be either global or local scope.
+ Scope refers o the section of code whera the -

Problem Recognition
Stakeholders say what they need from the solution.
This information is used to produce a chear list of system requirements and a

Local Variables

» Uses memory for longer.

«Can only be accessed within the subrouting

= Are deleted when the subroutine ends.
Ensuras subroutines ane salf contained.

variable can be accessed. definition of the problem. contained modules. « Breaching — A block of code s run only if a condition
= A local variable in a subroutine has We may consider the strenglhs and weaknesses of a current system. = This makes il easier lo divide is met using IF and ELSE statements

precadence over a global variable with the * We may consider the required inputs, outputs and the valume of stored data. tasks between a team and + Count Controlled Iteration — A block of code is run a

Sarma Narme. manage the project cerain numbar of imes. Usas FOR, WHILE or

where they were defined. individually. run while or until a condition is met. Uses FOR,
« Multiple variables with the same name can * [t improves the reusability of WHILE or REPEAT UNTIL statements.
exist in different subroutines. code.

. programs.
.Glnhnl:aVanahhummgh e « The problsm s broken into sub « Conltains a set of tools which make it easier for
-le.lsad formu:un hﬂﬂmﬂﬁﬂa Farm. prablems until each sub problem programmers to write, develop and debug code.
_ needed throughout is a single task. # May include stepping, variable watching,
« Rizk the variable is unintentionally edited. y """"h:";mw""“h'c'd‘s of code E;l eder "
ca nes.

REPEAT UNTIL statements.
+ Condition Controlled leration - A block of code is

It simplifies maintenance since
each component can be handled

o Top |:7CMII'I (Stepwise) Refinemeant
+ A technique used to modularise

Integrated Development Environment

* Programs used to write code.

m Object Orientated Techniques Problem Solving Strategies Functions and
O . ;\;:{an a subroutine calls . :.'Jh]am orie::dﬂg:g:ﬂnm Backtracking Procedures
+ Continues until a stopping + Aclass s a template for an objeet. . ﬁ;fmls‘;m TEU:'I?j-"!W- . ::"::1 code H:d‘*
- M:‘Dmn“ s met. T pnodject’s an leiance ofaclass. + Basad on paths which have been visitad and found 1o be correct. particutar task.
: R’::uhlmg"’m ines of of objects state Can a Problem be Solved by « The algorithm backtracks o the previous stage if an invalid path is « Functions must always
q) code. - Object state uses attributes. Computational Methods? Datf:-:l(ijﬁing ;amrn a dng; ?otmré
Expre netions beahav methad + Not all problems can be salved in this . = Procedures Ve
= * :::;;ﬂwxm : gmm:::r:::mﬂ = + Sama may nead loo mary mm;&y . mrl;:s pattems or outliers in large data sets, often collected from l;mtu'n avalt.ni”
sources. s Paramaters can
v : e, = These data sels are known as big data. passed to them by
@) Dm;z:fmau . = Topdown dﬂg" applies * m;m;:‘;mrﬁ : « It spots correlations between data and other trends which might not either reference or
(f) : memary runs out. o » Modules are built to be solved via computational mathods. be easy to see. valu?_
« Often challenging to trace saif cantained and reusable. « We must identify whether the problem can + Can be used 1o make pradictions about the futura. Passing by Reference
nd locate afrors, be solved using computational methods o A useful ool o assist in business and marketing. + The address of the
° before we attempt to solve it Heuristics parameter only is given
[A non optimal or rule of thumb approach. to the subrouting.
Problem Decomposition Abstraction * Usedto find an approximate salution Lo a problem. . mﬁ’:bm;@
q) * A problem solving « The problem is broken down into smaller » Represents real world entities using * Used where the standard solution takes too long. mivsn ;:d
technigue with subproblems. computational elements. * Does not produce a 100% accurate or complete solution. Pg . na;s.l
-+ three parts. « This is repeated until sach subproblam can ba + Excessive details ars removed to simplify . l:“'"'d“ an “';ﬂﬂo";a?: for intractable problems. ;“'“9;5';!“:“ .
« Divide - halve the represented using a single subroutine. the problem. * " Tarm mg; " ngnmlnad * A copy o value
size of the s This reduces the complexity of the problem = This may then match a problem which * Mathematical method 5 on systems. passed]
3 problem with sach and makes it easier to solve. has previously been solved. » Acheaper and less time consuming method "'M“":U applicatiors. subroutine.
iteration. = It enables programmers to see which areas can + Esisting modules, functions or libraries . Uﬁa?forsafelycrlﬁcal systems where a trial run can't be carried out. » The original value is
Q s Conquer - solve be solved using pre-existing libraries or can then be used lo solve the problem. Pipelining Tnga;i deleted at
the subproblems. modules. « Levels of abstraction divide a complex » Modules are divided into individual tasks. * the m:ha
+ Merge - combine = It makes the project easier to manage. prablem into smaller parts. + Tasks are developed in parallel. end
E the solutions. » Subproblems can be assigned to diferent » Different levels can be assigned to leams = Allows fastar complation. suExam nalm. ans will
s Itis applied in specialist teams or individuals. whilst hiding details of other layers. * The output of one process is often the input of ancther. . it mg ns | use
binary search, + Modules can be designed and tested s This makes the project easier lo manage. + Often used in RISC processors, which perform different parts of the mw:iql-l& unless
O quick sart and individually bafore baing combined. » Abstraction by generalisation graups Fetch-Decode-Exacute eycls at the same time. rwise. il
merge sort. « It makes it possible to develop modules in together sections with similar Visualisation . II'mEu" questions will use
+ [Itis a guick way to parallel and therefore finish more quickly. functionality. « Prasenting data using charts or graphs. o I“'r'{'ﬂxt”“dm':um
simplify comple:x s It i easier 1o debug the code and locate errors. » This allows segmanits 1o be coded « Makes it easier for humans to understand. ! 'CIHD
problems. together, saving time. = Allows trends o patterns to be more aasily identified. y:valug)

Computer Science

FORM

 Designing Algorithms
= A et of instrections used = The: priority for an akgorithm is to
10 solve & sat problem. acheeve the given task.
= Inputs must be cleary = The second prionty is to reduce time
defined. and space cormplexity.
= Must ahways produce & = There may be a conflict betweaen
walid output. space and time complexity and the
= Must be able to handle requiresments and siuation for an
invalid inputs. algorithm will dictate whech ls more
= Must abways reach a important.
stopping condition. » T reduce space complexity, make
= Must be well-docurnented as many changes on the original data
for reference. as possible. Do not create coples.
= Must be wedl-commented. = T reduce Bme complexity, reduce
the numiber of loops.

» Coimpares elements and swaps &5 needed.

= Compares element 1 to element 2.

» If they &re in the wrong order, they are
swapped.

= Thiz process ts repeated with 2 and 3, 3
and 4, and s0 on untll te end of the list is
reached.

= Thiz process must be repeated as many
times &3 there are elerments in the amay.

= Each repeat is referred to as a “pass”.

= Can be modfied 1o improve efficlency by
using a flag to indicate if a swap has
occurmed during the pass.

= If N0 swaps ane made duning a pass the list
rust be in the correct order and so the
algoritm stops.

=4 slow

elgorithm.
= Time complexity of 0{n2)

A divide and conquer algorithm.
Formed of & Merge and MergeSort

It then recursively calls MergeSont
on each part until their length = 1.
Mernge is called.

Merge puts the groups of elements
back together in a soned order.

‘You will not be asked about the
detailed implementation of this
algorithrm but do need to know how
It works.

It ks rmore efficient than bubble and
rmenge sort.

It has a worst case time of O{n log
n

= This repeats until
the kast element is
inserted into the:
cormect position.

= In the 1st iteration 1
elament & soned,
in the 2nd iberation
2 gre soned etc.

= Time complexity of
WA

Selects an element
and divides the input
angund it.

Often salacts the
central element, which
Is known as the plvat.
Elements smaller than
the pivot are listed 1o
its left.

Larger alements are
lisbed to ibs right.

The process is
repeated recuravely.
Show

Time complesity of
O(n2)

ORGANISER

= FILD {First In Last Out)

» Oeften an anmay.

= Uises a single pointer (the top
pointer) to track the top of the
stack

» The top pointer is initialised at -1,
with the first element being 0. the
second 1 and so on.

Stack Functions

= Check e siza ()

» Check if emply isEmpty ()

= Retumn top elerment (but don't
rEmove) paalk ()

» Add o the stack pash (alemant)

= Fernove top element from the
stack and return it pop ()

= The amount of storags
space the algorithm takes
up

= Dines not have a defined
motation.

= Copying data Increases
the storage used.

= Storage space s
expensive 5o this showld
e svolded.

= FIFCH (First in first out)

= Often an array.

= The front pointer maks the positon of the first
element.

» The back pointer marks the position of the next inputs.

avallable space. = O{nin) - Polynomizl time complexty - The
Queue Functions amount of ime is directly proportional to the
« Check gize siza () number of inputs to the power of .
» Check if empty isEmpty () = {2n) - Exponential time complexity - The

= Rieturn top element (but don't remove) paak ()

= Add to the Queue anquanae (alemant)

= Remove element at the front of the quews and
retum it deguena [}

= 0{1) - Consistent tme complexty - The amaount
of time Is not affected by the nember of inputs.
w Ofn) - Linear tirme complesty - The amount of
wme ks directly proportional to the number of

amount of ime will double with every additonal
Input.

= Oflog n) - Logarithmic time complexity - The
amourt of irme will incresse st a smaller rate ag
e number of nguts increases.

Contains several nodes. » Conaiats of nodes and edges.
Each node has a poiner to the = Cannot contain cycles.
next item in the list. » Finds the shortest path between » Eddges are not diected.
= For node M, Nmext will access two poants. = Can be raversed wsing depth first or
the next item. = The problem & deplcted &s a beeadth first.
= The first node is the head. weighted graph. = Baoth methods can be implemented
= The last node ls the tail. = Nodes represent the items in the recursely.
= Searched using a linear search. BCENEND Such as places, Depth First (Post Order)
= Edges connect the nodes Traversal
together. = Moves as far as possible through the
= Each edge has a cost. tree before backtracking.
= How much time an algarithm » The algorithm will calculate the T ——
needh tq aoke a problsm. best way, known as the least cost « Moves 1o the left child node
» Megsured using big-o notation. path, between two nodes. wherever possible.
= Shows the amount of time taken -Wlus&mam&ildm:hlfmlaﬂ
redative to the nurmber of inputs. child node exiats,
= Allows the required time to be «If thera are no child nodes, the
predicied. = Provides a faster solution than curment node ls uaed.
Dijkstra’s Algorithm to find the
shortest path between two nodies. 'mmmmmm
= Lges a heuristic element to decide Breadth First
which node to conssder when
= The Inverse of an exponential. choosing a path. = Starts from the left.
= An operation whech determines how » Uinlike Dijltra’s Algarithm, A* only = isits all children of the starting
many times & certain number |s multiplied Imlmfnrlueahnﬂmtpslh. node.
by Itself to resch another number. between two nodes, instead of the = Then visits all nodes directly
=%y = logix) shortest path froen the start node connected to each of thesse nodes in
=1(20)0 to all other nodes. tum.
«B{23)3 = Continues wntil all nodes have been

« 1024 {210) 10

= Oy works with sorted data.
= Finds the middle elerment, then decides on

= Works through the elements
one at & time untl the

which side of the data the requested
element is.

requested elemeant s found. = The unneeded half iz decarded and the

= Does not mead data to be

sorted.
= Easy to implement.

process repeats unbil either the requested
edement ts found or it s deterrmned that the
requested element does ot exst.

= Mot very efficient. = Avery efficlent algorithm.
= Time Cormplexity is 0{n) = Time Complexity is O(log n)

wiaited.

Haggerston School

Haggerston School

FORM ORGANISER

2.3 Algorithms

Search Algorithms
. . Linear Search function BirarySearch (alist, itenSzuht) Binary Search - Recursive Version
Big-O Notation LR -8 fume 1 b,
If you have to search for UB » dengeh(alist) - 3 o te oy falist, itmtomgit, 10, IB) In the best case,
LB <= LB A
. . . items in a file (or in an wid = (LB + UB} DIV 3 et both searches have
The time complexity of an algorithm if alist[mid] = itemSought then mid » (1B + UB) DIV 2 i
s th . b P array), and the roturs mid F alistinid] > iteougnt then . ey, ©9ual complexity.
is e worst-case number o else L aarytaerd » Fooubonght, 15,
. . . list/array are not in any if alist[mid] « itenSought them 140 atetfusd] « nasonght then
operations required for an algorithm)] LB = mid + 1 retuen binarySemecn [alist, stasSoughe, midl, LB})
. . particular order (i.e. slse slae However, in average
to complete given a data size of n , U » mid - 1 gt e
e Saear sorted), you will have to endif it and worst case,
nomial endif))
02 oin?) search through the endwnile encrmction binary search is more
return -1
items one by one. andfunction Linear Search vs Binary Search efficient (O(log n) is
';:':]“"' As the size of the data set doubles, the maximum Time Complexity better the 0(n)).
: number of possible checks also doubles. This means the time complesty Bestcase Average Case Worst Case
i time complexity is O(n). Unear Search Of1) Ofn) Oin]
: Binary Search Sinary Search Of1) O{log n) Ofiog n)
§ oii) » Can only be performed on an ordered list

Binary Tree Search

“Constant”

» Examine the middle value. Use (LB + UB)/2 and round . . :
Data size —= Similar to binary search

. . down if there's an even number of items (i.e. DIV) alaorithm. excent instead of
* Time complexity = measure of the o Check if item you are looking for is more than or less g o P
time required by a computer to run then this item using midpoints, half od the

the algorithm, given input values of e Whichever half it must be in, discard the other half tree/subtree is eliminated
with each pass after

-
size n including the middle item you had e
(f) e Space complexity = amount of « Repeat until found examining its root
computer memory required to run As the size of the data set doubles, the maximum number
G the algorithm, given input values of of possible checks only increases by one. This means the : bor of i
QO size n time complexity is O(log n). . X o 1153 WAWOET i HEms e
) Binary Tree Search - Time Complexity search is halved with
" e Big-0 value shows how function linearSearch (alist, itesSought) function binsrysearch {temsosght, currenthode) h
time/memory increases input data Sinett m =1 O e Tilne each pass
> size increases if-m- Y = False 1.6 seemsought = stem st currenthiode then Conversely, the
raturs Trus .
(@M © The default Big-0 value normally while i ¢ lemgth{alist) and found = Falee it stemsough < e st currentaie then (maximum) number- of
considered is the worst-case, if alist{i] = iteZought then gaa" PRI BAnAySeNreh (itemsonghe, left cnile) PASSES - INCTEAses 2
E though the best case and average :"d::. - : s ons e e e E
(el = Irue if right child exists then i P
O case should be considered endif g blnarysearch (Ltensought, right child) do.ub|e<.:| In size
e The best time complexity is 0(1), i '11 *l Hi;..u?“'" relee * This gives the same
] endif time complexity as the
then O(log n), then O(n), etc... return Sndex ez

endfunctian S binary search, 0(log n)

Haggerston School

FORM ORGANISER

2.3 Algorithms Searching Algorithms

Worked example: given the following values for listOfltems Pseudocode

and itemSearch, we have the following trace table
Linear Search Algorithm

* The purpose of the linear search algorithm is to find a target item 1istOfItems < [6,3,9,1,2]

low < 1
within a list itemSearch < 1 high < LENGTH (arr)

mid ¢ (low + high) DIV 2

e Compares each list item one-by-one against the target until the listOfltems |Out| WHILE val # A[mid]
match has been found and returns the position of th eitem in the | i x |pos|found |itemSearch 1] ut| IF A[mid] < val THEN
list P low < mid
o If all items have been checked and the search item is not in the | ¢ 5 -1 |False 1 6 ELIF A[mid] > val THEN
list, then the program will run through to the end of th elist and high < mid
return a suitable message indicating that the item is not in the list | 1 5 ENDIF
 The algorithm runs in linear time. If n is the length of the list, then o mid < (low + high) DIV 2
at worst the algorithm will make n comparisons. At best, it will ENDWHILE
make 1 comparison and on average it will make (n+1)/2 1 OUTPUT mid

comparisons
e The performance of the algorithm will be improved iof the target
item is near the start of the list

¢ The time complexity of the linear search algorithm is O(n) Binary Search Algorithm
e The binqrz search algorithm works on a sorted list

Ml o N

4 |True 4 | Worked example: given the following values for arr

and val, we have the following trace table:

IF listOfItems[l] == itemSearch THEN mrid=8 Low Mid High
Found <= = True ¢ Much quicker than
pos < i + 1 Itaration 3 . _ | _ 6B 72 81 | 98 Bin linear search .
ENDIF L1=8, H=11 laely7 because it halves | * Iheblm r::leedzl
i=i+1 riid=3 low Mid High |Search ihe seareh Zeme @ 0 be ordere
ENDWHILE Ineration 4 — = o each step

OUTPUT pos 1=8, H=11
mid=10

Example by identitying the middle value in the list and
(@M Find the position of letter "Z" within the following list. Assume we do comparing it with the search item mid | high | low | A[mid] | A[high] | A[low]
not have visibility of the list: e |f the search item is smaller, the mid element
(- becomes the new high value for the search area 6 n 1 A o8 0
Index position | 0 1 2 3 4 S 6 7 e If the search item is larger, the mid element
q) becomes the low value for the search area 8 n 6 68 08 a1
Value \ A S z X R T G o This keeps repeating until the search item is found
o— e When the search item is found, the index position o n 8 72 o8 68
O We compare it with the value in index position 0. We find that the of the item is returned
value is "' so we need to move on to the next index position. At ¢ At each iteration, the search are halved in size. 10 m 9 81 98 72
index position 1 and 2, we still have not found z. However, we get to Consgquen‘rly, Thlg el eH'C,'em algorithm)
(f) . s ; e The time complexity if the binary search algorithm
index position 3 and we compare the target with the value and we is O(log n)
find they match, so the algorithm returns the index position and 9 Linear search versus binary search
(@ stops. Examples: Binary search in operation to find 81 Advantages Disadvantages
Lo helid High
G) Pseudocode « Very simple _
i <0 lterstionl | O | 5 | 13 | 19 | 22 | 41 [55 68 | 72 81 | 98 algorithm and ¢ Slow because
i x < len (listOfItems) L=1,h=11 Linear easy to implement ;Lseorc}f]he;
= ick=5 i i e No sortin FeLE]n 2
s B mi Low Mid High o h sorting whole list
found < False aration 2 4 55 68 T2 8 98 eare required e Very inefficient
(@Ml "HILE i < x AND NOT found o * %’;’d ey e for K)ng lists

Computer Science

FORM

2.3 Algorithms Sorting Algorithms

Python implementation using lists

def binaryTreeSearch (node,searchItem)
path.append (values[node])
1f values[node] == searchItem:

return "Value in Tree. Path: "+str (path)

elif values[node] < searchItem:
if treeRight[node] == -1:
return "Value not in Tree”

return binaryTreeSearch (treeRight [node]

elif values[node] > searchItem:
1f treeLeft[node] == -1:
return "Value not in Tree"

return binaryTreeSearch (treeLeft [node]

path = []

node(0,1,2,3,4,5,6,7,8,9]

values = [10,1,17,4,11,8,14,5,12,16]
treelLeft = [(1,-1,4,-1,-1,7,8,-1,-1,-1]
treeRight=(2,3,-1,5,6,-1,9,-1,-1,-1]
print (binaryTreeSearch (0, 5))

,SearchItem)

,SsearchItem)

Tracing
Call num Call
I BinarySearchTree(10,5)
2 BinarySearchTree(1,5)
3 BinarySearchTree(4,5) 4
4 BinarySearchTree(8,5) 8
5 BinarySearchTree(5,5) 5
Sorting Algorithms
Bubble Sort
» Go through the array, comparing ™=
each item to the one next to it Lrlefe]e] |‘[“|’1?| I"'I’l’]rl

« Of it is greater then the next one, =

swap them over I CEEE CLED

e The last element will be the

largest one after the first pass
: Lel«l7]
o There will be a total of n-1 passes.

g
| [T1e17]

The number of comparisons

reduce by one with each pass. [ef«]a]7]

iC

ORGANISER

numbers = [9, 5, 4, 15, 3, 8, 11] °

numItems = langth(numbers)
i=-@

swapMade = True .

while i < (numItems - 1) and (swapMade = True)
sWwapMade = False
for § = @ to (numltems - 1 - 2)
if numbers[j] * numbers[j+l]

#swap the numbers °

tamp = numbers(]]
numbers[j] = numbers[j+1]
numbers[j+l] = temp
swapMade = True
endif
next j
imis+l
endwhile
print (numbers)

Insertion Sort

mza1mszc&:311usz.

[second Pass | 23!1 10]s|2|eb|1]2sf0]s]2]

e lnonanlnn HaE

I wfa]s]2 = [a]s]w]2s] 2]

m 1[5 [w]m[z]=[1]2]5[w]a]
N A

Much like you would sort a hand of playing

cards. From the left, move each card into the
correct position relative to those its left.

function insertionSort{aliszt)
n = length{alist)
for index = 1 ton -
itenInHand = iL'.ist[indax]
position = index
while position > @ and aslist[position-1] » itemInHand
alist[position] = alist[position-1)
position = pasitien - 1
endwhile
aList[position] = ltemInHand
next index
endfunction

Bubble Sort vs Insertion Sort Time Complexity

Haggerston School

Both have the same best, average and worst case time
complexity

However, in real-world terms, the insertion sort is
considered slightly more efficient - in most average
situations, there will tend to be slightly fewer iterations
required to take place than for a bubble sort

Also, a bubble sort requires items to be swapped,
while an insertion sort requires items to be simply
moved (which is a less complex process)

Bubble Sort vs Insertion Sort Time Complexity
For a list of size n, both algorithms will require n
memory locations
No matter how big the data set gets, the amount of
space required (extra to the data itself) remains the
same
Both algorithms are 'inplace' - the sorting takes
place within the data set itself, not outside of it
Thus, the space complexity of both algorithms is 0(1)
(i.e constant no matter how large the data set is)

Merge Sort EEHHEEH

e Successively split the

lists into sublists until (= ”J H |T l“‘|
there is only one item in

each sublist - :!B - -
Merge pairs of subllsfsl_ |_| |_| L_I |_ ._| |_._|

into sequenced lists of

2, then 4, ther 8 etc.. IA‘TF] —‘ﬁ |_‘|J-| |_L\

!’rems until all |T§ms are - H[n o e
in one merged list LI_[_
e This is the sorted list maﬂ
Function mergesort(array a)
U e This is a recursive
array R - [aln#211] ... ofn]] fUnCﬂOn
L = mergesort(L)
8 - norsesart() e This first function
return mergell, R) . o e
eronnction continually subdivides
roction mem i, B the list until we get
sortedheray o o individual 'lists' of one
while (L and R arce BOH not crpty)
if (LI0] > Rie)) element each
add R[9] to the end of sortedirmay
reroue &{o] #ron A e Due to the nature of
8] 4o b et ot meetmtionny recursion, the 'merge’
e Lol frem L function occurs as part
wnile (L 8 rox o) of the unwinding,
add L[] to the end of newArray .
e 18] fren L. gradually merging the
e ot ety lists together, two at a
remve R8] fron R -hme

return nevirray
erdfunction

Haggerston School

FORM ORGANISER

2.3 Algorithms Sort Algorithms

The majority of sorts will be average case, so no real difference

in time complexity
leftmark - start + 1

Merge Sort Time Complexity rightmark = end e Only in the worst case does a merge sort outperform a quick sort

. . . done - False i i i
 Since this uses a divide and conquer approach, as seen ,ai1e done - False in terms of time complexity

for a binary search (doubling the number of items only while leftmark <= rightnark and alist[leftmark] <= pivot ® The merge sort has a much worse space complexity

function partition (alist, start, end)
pivot = alist[start]

leftnark = leftmark + . q "
adds one more iteration), the time complexity is O(log n) emu‘:‘ el e For very large data sets, this problem with space complexity that
« However, for each 'set' of n items to sort, there will be n while alist[rightmark] >- pivot and rightmark 3- leftmark the merge sort has compared to the quick sort is a real problem
sublists that need to be combined e ghtmark = rightmark - 1 » Can result in more use of virtual memory, impacting fime and
. 'fl'his mec.:cns the time complexity has to be multiplied by a i clghtmark < leftnark Eicr:f:srsn;znr(:\eoreG:egflmlcer;econdqry storage is required to be
actor ot n else
* So, overall time complexity is O(n log n) 14 swop the list itens . 'For ’r'hese reasons the quick sort is generally regarded to be the
e This is the same in the best case, average case and alist[leftmark] = alist[rightmark] best
worst case alist[rightmark] = temp
i# Dijkstra's Shortest Path Algorithm
Merge Sort Space Complexity ::Wm:p.ig:tﬁ:::t;ith alist[rightmark] Dijkstra's Inefficiency
. The. merge sort requires additional memory for :ﬁ:t{i;;;&:k?listgigﬂmk] o i algitim wil el
storing the left and right halves of the list as they return rightmark visit every node in order to find the \
are combined (worst case, this will be n items inendfunctica shortest distance between two _ ~_ © C
both halves combined) femction quicksovit(elist, stert, wd) nodes A — —
start < .o 1 .
e This gives a space complexity of O(n) 11 partition the list * Dijkstra’s algorithm takes no account ;/15 = Q
Quick Sort ?Fllt - partition(alist, start, end) of the best general direction to”/< N RE
— quicksort(alist, start, split-1) head in. The only thing considered is /2 h A
P engi cksart(slist, splitsd, end) the distance between nodes (no/, ¢ I 1o =
[o]|s]s[2]s]s]|s][1]3] return alist matter whether you are heading G | &1 BF
endfunction towards your destination, or away A-B-F-G
Quick Sort Time Complexity and Space from it
P P
Complexity A* Algorithm

e Again uses a divide and conquer approach, as seen
for a binary search (doubling the number of items only
adds one more iteration), the time complexity is 0(log
n)

e However, each of the n items has to be compared
against the current pivot value, meaning the time
complexity has to be multiplied by a factor of n, so
overall average case time complexity is O(n log n)

* In the worst case, every data item would need to be

involved in a swap or change of position for each _ the rouah direct distance from
iteration. The worst case time complexity is @(n) 9 I WH|BSkaks Iran
o each node to the destination VI |120 |25 |55
e The space complexity is O(log n) T |[Be 0 [erds& T
first partition Quick Sort vs Merge Sort Time Complexity e Although it might sometimes be a good idea to travel away
2 ol Ip han the oi | be i from your destination for a short distance (e.g. to get on the
.Gh € emenc1l‘s gre'cafrer UHEL D [PV Gl B LT T motorway), in general it is best to travel toward the destination
v esegonl parh’rlonh | h " BostCate AweageCase WoistGase e The A* algorithm is likely to outperform Dijkstra's algorithm
. Eelcéurswely repeat the processbyhfl eic FTorthon because it is likely to visit less nodes, find a more direct,
ales ey enee . Recom.lnl.ng e e optimum path more quickly, and consequently be more

from the bottom will mean the list is now sorted officient

* Similar to Dijkstra's algorithm, but
uses two costs

e Dijkstra's algorithm has one cost for
each path, the real cost (e.g. .
distance) from one node to another ws | anw [s | our

* The A* algorithm uses this cost too, 74 | 2 .0 |2,

but also an approximate cost from c |25 |40 |ns

each node to the goal. Youcould 72 |73 |22 |iod

also think of it as a 'crow flies' value ¢ [75 |65 |i4o
Vd<s 100 |50 150

e Select a pivot value, e.g. first item in the list, but
could be any
* Divide the remainder of the list in two portions:
1.all elements less than the pivot value must be in the

PHMAND 5 i
mn 5

Ofn log) Ofn log a) On¥)

Computer Science

Ofn log) Ofn log) Ofn key n)

Haggerston School

FORM ORGANISER

2.3 Algorithms Sorting Algorithms Merge sort pseudocode Merge Sort Step I: Divide - Keep dividing until

SUBROUTINE MergeSort (List, Start, End) Merge sort is a f}'ﬁe of divide
Bubble Sort and conquer algorithm T
e The purpose of sorting algorithms is to order an IF_Start < End THEN e There are two steps: divide and 5 3 ‘ 4 21
unordered list. ltem can be ordered alphabetically ~ Mid < (Start + End) DIV 2 combine . N
or by number Listl < MergeSort (List, Start, Mid) e Merge sort works by dividing the 53 4 [21
. Bubgle sort steps through a list and compares pairs List2 « MergeSort (List, Mid + 1, End) unsorted list sublists. It keeps on
of adjacent numbers. The numbers are swapped if List3 « [] doing this until there is 1 item in 7N 7
they are in the wrong order. for an ascending list, if ° _ , each list 5 3 4 21
the left number is bigger than the right number, the =~ WHILE LEN(Listl > 0 AND LEN(List2) > 0 o Pqirs of sublists are combined /
items are swapped, otherwise the numbers are not IF Listl[1] > List2[1] THEN into an ordered list containing AN
swqued APPEND List2[1] TO List3 all items in the two sublists. The 2 1
e The algorithm repeatedly passes through the list until POP List2[1] FROM List2 algorithm keeps ?omg until there
no more swaps are needed is only 1 ordered list remaining Step 2: Combine
e The time complexity of the algorithm is O(n?) i e Merge sort is a recursive e
APPEND Listl [1] TO List3 fL;'nc’rion that ccllls itself . 5 3 4 2 1
Pass |S|a|afr]2 POP Listl[1l] FROM Listl e The time complexity ot merge S T A
Examp/e: Sorf ! 3|5| 4| 1| 2| compare5and3-swap ENDIF sort is O(n |Og n) ‘\3\? \\\‘// 1
fhe fO”OWIng 3|4|5| 1|2 | compare5anda-swap ENDWHILE | | 2 d
sequence in D22 2|2 || CorrmSatid=cTz WHILE LEN(Listl) > 0 Tracking the code T
m ascending order 3|4| 1| 2|5 | Compare5and2—swap;end of pass 1 APPEND Listl [1] TO List3 L= [5, 3, 4 12 l 12 2] 2 3 4 5
0 Uslng bUbb/e Pass | 3 | 4 | 1| 2 | 5 | Compare3and4—no swap POP LlStl [1] FROM LlStl Mergesort (L’ l ’ 5) l T T]
sort: 5,3,4,1,2 2 - ENDWHILE List 12 3 45
St A7 | Compareaandtswep . Call | Start | End Mid D
(- P P 7Y P v WHILE LEN(List2) > 0 Returned o .
S T ESEED APPEND List2[1] TO List3 . . 5 3 1.the first |’rem§ in the
q) 3l1|2]|4]>5 gumparedand5—nuswap;endofpass POP LlSt2[l] FROM List? fhe two jUbIISLS ;J}:e
P — :ass 1)13| 2| 4|5 | Compare3and1-swap ENDWHILE . 2] 5 2 (S:;r;] Iedsr-.re Vgrue |es
O 12| 2| 4|5 | comparesamdz—swep RETURN List3 3 1 2 1 Ic:opied to the parent
12| 3|4 |5 | Compare3and4-noswap ELSE 4 1 1 [5] ist . . .
1) 2| 3|4 |5 | Compare4and5-noswap; end of pass Listd <« [] 3 'I 2 'I 2;"::9 Copled gerp IS
U) 3 APPEND List[Start] To List4 1hen gfmove rom
)2]s]a]s . 5 2 2 3] 2 aliele
RETURN List4 3.When there are no
— Bubble sort pseudocode ENDSUBROUTINE 3 ! 2 ! [3,5] ;’Lems |efl’;|.ir]r oneﬂ:n‘
e sublists, e
q) A < [5,3,4,1,2] Merge Sort vs Bubble Sort 2 ! 5 2 remqining items in
sorted ¢« False - 6 3 3 [4] the other sublists are
- WHILE not sorted Advantages Disadvantages then copied, in order
sorted < True 2] 5 2 [54.5] to the parent list
S FOR i TO LEN (A)-1: e Can be slow particularly for 1 1 5
IF A[i] > A[i+1]: .V ol d long lists. As the number of
Q_ temp ¢ A[i] Bubble Sort egy erlm e fﬁ items increases, the time 7 4 5
A[i] < A[i+1] robust aigortinm taken for the algorithm to) 4 4 1
A[i+l] < temp run increases dramatically
E sorted ¢ False 7 4 5 4
ENDIF e Much faster then * More complex to ° 5 5 2]
O ENDFOR M Sort bubble sort, especially understand
ENDWHILE erge sor when the number of e Step I: Divide 7 4 5 4 [1,2]
Q OUTPUT A elements is large e Step 2: Combine . . 5 5 |[,2545]

FORM

2.3 Algorithms Classification of Algorithms

O
O
C
0
O
n
0
—f—
>
ol
S
O
O

Comparing Algorithms
e The time efficiency of algorithms refers how long an
algorithm takes to run as a function of the size of the
input
¢ More than one algorithm can be used to solve the same
problem
e For instance, to calculate the sum of a sequence of
numbers, we can use the following algorithm:
sum=(n+1)*n/2
where nis the number we wish to sum the values up to. Using
this calculation the time remains constant regardless the
value of n. In other words, regardless of how many numbers
we wish to add up, the time taken will always be the same.

sum €< 0
FOR 1 < 1 to n
sum < sum + i
ENDFOR
OUTPUT sum

We could use alternative
algorithm to calculate the

sum of a sequence of

numbers.

Using this algorithm , the number of operations increases in
linear time with the size of the input. Therefore, the time
taken for the algorithm to run will grow in linear time as in size
of the input increases. Clearly this is more inefficient than the
first algorithm even though it solves the same problem.

Another area where algorithms differ in their efficiency is in
regard to the memory requirements of algorithms. For
instance, programs that read in huge data files into memory
can end up taking up large space in memory.

When developing algorithms, it is important to consider the
hardware constraints of the system you are developing, e.g.
mobile phone which has limited processing and space
capability. If you have large memory, then your algorithm can
afford to be less space efficient. Likewise, if you have access
to tremendous processing power algorithm (e.g.
supercomputer), you may not need to be time efficient,
although it is still desirable to make algorithms as efficient as
possible.

Maths for Bog O Notation
A function allows us to map a set of input values to a set of

y=f(x)

output values

ORGANISER

where x is a value from the domain and y a value from the
codomain
domain -> codomain

A linear function takes the form y = mx + ¢, where m is the
gradient and ¢ the intercept on the y axis.

A polynomial function takes the form y = ax®+ bx + ¢

An exponential function takes the form y = o*

A logarithm function takes the form y = alog, x
Permutations illustrate how the number of operations

grows factorally when we add additional dimensions to
some problems.

i No. of digits | No of combinations
How many different
combinations can 2 2
sequence of digits
have? 5 6
4 24
Big-O notation gives
us an idea of how S 120

long a program will

run if we increase the size of the input. We need to
consider how many operations will need to be carried out
for a given size of input. This gives is the time complexity
of the algorithm.

Constant Time O(1)

The time remains constant
even when the number of
input increases. E.g.
calculating the sum of «a
sequence of numbers.

sum = (n+l) * n/2

Regardless of how many numbers we wish to add up, the
time taken will always be the same|.

time

Sl of input.

Logarithmic Time O(log n)
The time taken for the

4 4 . tirme -
algorithm toi sun will grow —
slowly as in size of the input -
increase

Size of input

Haggerston School

Linear Time O(n)
The time taken for the algorithm to run will grow linear
time as in size of the input increases.

E.g. inefficient algorithm to
caleculate the sum of a

sequence of numbers

time
sum = 0
for i=0 to n

sum = sum + 1

Size 8 input

output (sum)

Polynomial Time O(n)
The time taken for the algorithm to run will grow
proportionally to the square of the size of the data set.
Normally when you have
nested for loop, this will

have a polynomial time |
time

complexity.
for i=0 to n -
for j=0 to n S
Size of input

Do something

Exponential Time 0(2) |
The time taken for the /
algorithm will grow as the j
power of the number of
inputs, so the time taken
for the algorithm to run will
grow very quickly as more
input data are added.

time

Size of input

The time taken for an algorithm to run will depend on the
hardware (e.g. processor clock speed, RAM size), even
though the number of operations will be constant for a
fixed output

Tractable problems are problems that have a polynomial
or less time solution e.g. 0(1), O(n), O(log n), 0(n2)
Intractable problem are problems that be
theoretically solved but take longer than polynomial time
e.g. 0(n!), 0(2")

Heuristic algorithms are used to provide approximate but
not exact solutions to intractable problems.

can

Computer Science

FORM

2.3 Algorithms

The Travelling Salesman Problem
The idea is to find the shortest route to visit all cities. This is a
permutation of the number of cities, so has a factorial time
complexity, so quickly becomes an intractable problem with
an unfeasibly huge number of permutations.

To solve this we use an heuristic algorithm. This provides and
acceptable solution to the problem but it may not be the
optimal or best solution. So for the travelling salesman
problem, we may find a short route but not necessarily the
shortest route. Heuristic algorithms for the travelling salesman
problem include the following:

e Greedy algorithm: take the shortest route to the next city

e Visit the cities in a circle

e Brute force algorithm: apply to small but different subsets
of cities. Apply the brute force algorithm to fewer,
manageable problems rather than a single, intractable
problem

Time complexity of common algorithms

Linear Search 0(n)
Binary Search O(log n)
Binary Tree Search O(log n)
Bubble Sort 0(n?
Merge Sort O(n log n)
Travelling Salesman Problem o(n!)
Brute force password cracker where n is the o(A")
legnth of the password

Unsolvable problems. Some problems cannot be solved by
a computer. The Halting problem is one such problem and
shows that some problems cannot be solved algorithmically.

The Halting problem states that there is no computer
program that exists that can determine whether another
computer program will halt or will continue to run forever,
given some specific input.

ORGANISER

Haggerston School

Traversing Graphs

B, B]

We can use depth first traversal or breadth first traversal to
traverse a graph: Graph used in example to follow:

[A E, C, F]

Breadth First Traversal

[B, F]

Breadth first traversal starts at a node and explores all the
neighbour nodes before moving into the next ;evel of nodes. A

A, E] ‘,: y, ‘\“-. .':

breadth first traversal uses an iterative approach. A typical

m({O|O|wm|X>

[D, B] -

application of a breadth first traversal is for determining the
shortest path of an unweighted graph.

n

[B, Cl

Node [i [output| visited queue Depfh F.irs.' Traversal
Depth first traversal starts at a node and traverses
A (Al [A] | h path as far as | before backiracki
breadth_first_traversal (noley along each path as tar as it goes betore backtracking
queue = [] A I to the next branch. Depth first traversal uses recursion.
visited = [] [AD] [D] An application of a depth first traversal is for
queue.append (node) [AD,B] [D.B] navigating a maze.
visited.append (node) D 2 (8] # Uses recursive calls
A depth_first_traversal (node)
E [ADBE] [BE] visited.append (node)
while queue is not empty B B [E] fi? i ;gtgiip\};is[?iceii]:
node = queue.pop (0) A . .
. . depth_first_traversal (1)
print (node, end =) c
for i in graph [node] .
if i not in visited c [AD,BE] [EC] ﬁisiraph represented as an adjacency
i F AD,BECF] [[ECF
qlllellle * append (l) ., [] [] graphz{ "A" . ["D", "B"] , "B" H ["A", "E", "c",
visited.append (i) E [CF] nER] O\

C [F] nen. ["B","F"], npr. ["A","E"],\
graph={'A":['D', 'B'],\ F i E":["D","B"],"F":["B","C"]}
'B':['A','E','C",'F'], 'C': ['B','F'],\ Call | Node i visited
lDl: [lAl,lEl],'E':[lDl,lBl], lFl ['B', 'C']} []
breadth first traversal ("A") c 1 A [A]

3 4 2 D D [[AD]
A
Navigating a maze with depth first 3 E E_|[ADE]
traversal D
Nodes are placed at the start and . 4 B B |[ADEB]
end points as well as at locations A
where there are alternative paths 1 -
Graph representation of maze with Graph representation of maze without S c C |[ADEBC]
dead ends dead ends B
,-l ~ — . 6 F F |[AD,EB,CF]
. ey —~
-, —— . P Nt 13— 5"
~(1] W T) L
L .~4',,.
)
- |_2_| M1 _ b

Haggerston School

FORM ORGANISER

2.3 Algorithms

Pre-order traversal
pre_order_traversal (node): L i
print (values[node]) Y Tl NN

Tree Traversal

There are three ways of traversing a binary tree: if tree left[node] != -1: VA, 3
Pre-order tree traversal d y 1t left d P arut WA SN N
Post-order tree traversal | LRASSERREe R e e (tree_left[node]) SN N V22N AN
oS if tree_right[node] != -1: Py B L Y S LN NN
In-order tree traversal pre_order_traversal (tree_right[node]) AERV ‘fl' 5 ® 11 Wl
values=["+","-","*" 2> 4 6,6 7] ~ :,:.. \h fl ‘,.IIII .;_3‘13‘_.' |
When traversing a tree we start at the root node. We can tree_left=[2,4,6,-1,-1,-1,-1] - T T
then visit the node (that is, obtain the value of the node), tree_right=[3,5,7,-1,-1,-1,-1] Post-order traversal
traverse Ief’r.or ’rroyerse ngh’r.. ') pre_order_traversal (1) post_order traversal (node):
The order in which we visit, A if tree left[node] != -1:
traverse left or traverse right L N Value |Tree_right| Tree_left post_order_traversal (tree_left[nodel)
depends on the ftraversal 4 Node Output . ; R
method that we use = 17) [node] | [node] [node] if tree_right[node] != -1:
: R p— : 3 5 post_order_traversal (tree_right[node])
+ + :
print (values[node])
Pre-order fosf_ordler [T Py, ee— | 2 _ 5 4 _ values= [nyn , wn_mn , LRl , 2 , 4 , 6 , 7]
traversal raversa tree_left=[2,4,6,-1,-1,-1,-1] -
4 2 =l =l 2 tree_right=[3,5,7,-1,-1,-1,=14 - J*__
(D 1.visit node 1.left traversal 1.left traversal 2 _ 5 4 post_order_traversal(l) - - oo “ ~
Order 2.left traversal | 2.right traversal| 2.visit node T N >0)
. e . I L B y -
O 3.right traversal| 3.visit node 3.right traversal 5 4 |] 4 VAR VAN /oA N\
-I o 3 2 ,f'() ,/’I.’ . ‘\ \\ / f,_-’ .-"\\. \‘\\ \
(@ (Example 10,1, 17 1,17,10 1,10,17 7N A\
* * I /o A L1 TR
Ordering a 5 / 6 ~ N S N/ P
q) Example Prefix Notation, | Reverse Polish sequence of 6 R K 6 ' ~NJ I
— application| Copying a tree Notation numbers, binary | . of
tree search 7 - - Value |(Tree_right| Tree_left
O Call Node Output
In-order traversal [node] | [node] [node]
(f) in_order_traversal (node): Value | Tree_left |Tree_right 1 1 + 3 2
if tree_left[node] != -1: Node [node] | [node] [node] Output 5 5 B : 7
in_order_traversal (tree_left[node])
| G print (values[node]) 1 10 2 3 3 4 2 -1 -1 2
if tree_right[node] != -1:
(D in_order_traversal (tree_right[node]) 2 4 ° 2 2 - ° 4
node_index[1,2,3,4,5,6,7] 4 3 - - 3 4 5 4 1 - 4
t values=[10,4,17,3,5,11,18]
-] tree_left=[2,4,6,-1,-1,-1,-1] 2 2 2 + -
tree_right=[3,5,7,—l,—1,—1,—_1] 5 5 _'I _'I 5 5 5 * 6
Q_ in_order_traversal (1) 3{;-16\})
A 1 10 10 6 6 6 -1 -1 6
B P e e T
E e O 3 17 6 7 5 3 * 7 6
JS2l a5 |17] '\\
Sequence output: / ';\i : "-\ A SN '\ 6 n -1 -1 n 7 7 7 -1 -1 7
@) 3450001738 /00N A AN
AR F 1 N =\ 5 17 17 > 5
s / 5 5 .r'J f \ o Y
() &C° /0 NG| e\m) o) g 18 1 B 18 1 1 + 3 .
L — . -/ - :-_.-:q__ {

2.3 Algorithms

0
O
-
O
O
n
O
—f—
>
ol
S
O
O

FORM

Reverse Polish Notation

ORGANISER

Convert from infix to Postfix notation

Haggerston School

Infix Notation Step1 |Add brackets (3+((5x3)/(7-4))
We are all familiar with infix notation where the operators appear between the operands Wri h ds with
i.e. th bers) that you want to apply the operator to Step 2 rite out the operands wit 35374
(i.e. the numbers you w pply P . spaces
Reverse Polish Notation (Postfix) Starting with the inner most
RPN uses postfix notation where the operators follow the operand. Using infix notation to b 35 37 4- 3+(15/3)
rackets, move the operator to
add two numbers we get: Step 3 3537 4/ 3+5
<operand> <operator> <operand> 3 + 4 after the operands from
3537 4/+ 8
between the operands
In RPN (postfix notation) this becomes:
<operand> <operand> <operator> 3 4 +. 2+(5x3)/2
Many interpreters and compliers automatically convert between infix notation to postfix
notation, so there is no requirement to write code using the less familiar postfix notation. Output Input
Adva.niages of Postfix Alternative Shunting Yard [
© Slmp|er for Compu‘fer to eVC||UCIfe AI or”-hm to Conver-‘- -From
* Do not need brackets intix to postfix notation
* Operators appear in correct order of precedence of operators, Operator
so there are fewer operations
RPN Algorithm Worked example: Convert the following expression to RPN: 2 + (5x3)/2
1.Go through each character in the postfix expression from left to right) Output | Operator
2.1f character is a number, then push number onto the stack Symbol Action veue stack
3.Otherwise, if the character is an operator (+,-,/,X), then pop the top q
2 numbers from the stack 2 Push operand onto output queue 2
4. Evaluate the 2 numbers using the operator
5. Push result back onto the stack + Push operator onto operator stack 2 +
Worked example: Solve the following expression: 531+ - 6 x 5 Push operand onto output queue 25 "
Stack at each step: Answer is 8. Infix expression (5-(1+3))x6
] ; B 7 5 B = . Push operand onto operator stack, x has higher 55 -
precedence than +
5 3 1 4 1 6 6
5 3 5 1 3 Push operand onto output queue 253 X+
5 / Pop stack to output, x has same precedence as /. Push [2 5 3 x +
1531+-6x |531+-6x [53H+-6x |531+-6x 531+-6x 531—6x |53+—bx- on operator stack, / has higher precedence than + 253« /+
Rl el A el 2 Pop operand onto output queue 253x2 +
z::: ° z::g 4 z:::] Evaluate 1+3=4 |Evaluate 5-4=1 z:i: 6 Evaluate PoP P 4 /
stack stack stack Push result on |Push result on stack 6x1=6 Push Pop whole stack onto output queue 253 2/+
stack stack result on stack

Haggerston School

FORM ORGANISER

2.3 Algorithms Optimisation algorithms

Dijkstra Pseudocode
Dijkstra's shortest path algorithm Q < [
e The purpose of Dijkstra's algorithm finds the shortest path ~ distance < []

between nodes / verticies in a weighted graph previous node < []
e Selects the unvisited node with the shortest path FOR i¢= 1 TO NUMBER OF VERTICIES
e Calculates the distance to each unvisited neighbour Append 1 to Q
e Updates the distance of each unvisited neighbour if ~ Append 100 to distance
smaller Append -1 to previous_node
e Once all neighbours have been visited, mark nodes as ENDEFOR
visited distance[l] < O
WHILE LEN(Q) !'= 0
Example Graph u < Qf1]
Pop u from Q
Q 8 o FOR v in O Trace table given then following matrix
- IF matrix([u] [v] > O:
O 5 e - . 2 A 1 a=distance[u] + matrix[u] [V] u/v 1 2 3 4
C 3 : IF a<distance[vV] 1 0 2 5 3
G)) \ 3 N dlsténce[0]=a 5 0 0 0
— 1 \ . , previous_node[v]=u
4 ' —~ o ENDIF 5 0 0 0 0
O o -3 ENDIF 4 0 0 0
p) ENDFOR - :
Start at node A because it is the unvisited node with the ENDWHILE - - “ a_|Distance Previous_node
—_ shortest distance to node A. The distance to each unvisited 12,54 100 | 100 | 100 | 100 | -I -1 -1 -1
() neighbour is 3 and 5 for B and C respectively. B has the 0
+— shortest distance to node A so this is the next unvisited node 2341 ’)) :
we select. At B, there is only 1 neighbour (C). The distance is ~
> updated because the route A-B-C (4) has less cost than the 3 5 5 1
(@I route A-C(5). E is the next unvisited node with the shortest
4 3 3 1
distance and is has neighbours D and F. F has the less cost
E out of the two and is then selected as the next unvisited node. 54 |2 5 5 5 2
O The shortest route is A-C-E-F. 4 |3
Q - |4

O
O
C
0
O

n
0

—f—
>
ol
S
O

O

Beginner's Python
Cheat Sheet

Variables and 5trings

kil ¥, i

o |

print{“Hello world!™)
Hello world with a variable

msg = "Hello world!"
print{msg)

Concatenation (combining strings)

first_name = "albert’
last_name = ‘einstein’
full_name = first_name +
print{full_name)

Lists

Make a list
bikes = ["trek", ‘redline’,
Get the first item in a list
first_bike = bikes[@]
Get the last item in a list
last_bike = bikes[-1]
Looping through a list

for bike in bikes:
print{bike)

Adding items to a list

bikes = []
bikes.append("trek')
bikes.append(' redline')
bikes.append{‘giant”)

Making numerical lists

squares = []
for x in range{l, 11):
sguares . append(x**32)

o

+ last_name

ORGANISER

List comprehensions

squares = [x**2 for x in ramge(l, 11)]

Slicing a list

finishers = ['sam', 'bob', 'ada‘, 'bea’]

first_two = finishers[:2]

Copying a list
copy_of _bikes = bikes[:]

nilar to Nists, but the ifams in a fuple can’t ba

ed

Making a tuple
dimensions = (1928, 1888)

if statements

equals ¥ == 42
not equal ¥ 1= 42
greater than X » 42
or equal to X o»= 42
less than X < 42
or equal to X <= 42

Conditional test with lists

"trek' in bikes
"surly” not in bikes

Assigning boolean values

game_active = True
can_edit = False

A simple if test

if age »= 18:
print{“You can votel®™)

If-elif-elze statements

if age < 4:
ticket_price

elif age < 18:
ticket_price = 18

else:
ticket_price

15

Haggerston School

Dictionaries

A simple dictionary

alien = {"color’': "green’, "points': S}
Accessing a value

print{*The alien's celor is " + alien['color'])
Adding a new key-value pair

alien['x_position'] = @

Looping through all key-value pairs

fav_numbers = {'eric’': 17, 'ever': 4}
for name, number in fav_numbers.items():
print{name + ' loves ' + str{number))

Looping through all keys

fav_numbers = {'eric’: 17, 'ever': 4}
for name in fav_numbers.keys():
print({name + ° loves a number')

Looping through all the values

fav_numbers = {'eric’: 17, 'ever': 4}
for number in fav_numbers.values():
print{str{number} + ' is a favorite')

User input

Your programs can prompt the user for input. Al input 13

atore Siring
Prompting for a value

name = input(“What's your name? *)
print{"Hello, * + name + “17)

Prompting for numerical input

age = input{"How old are you? ")
age = int{age)

input{"wWhat's the value of pi? ")
float({pi)

pi
pi

Python Crash Course

Covers Python 3 and Python 2

nestarchpress.com/pythoncrasheourse

Computer Science

Beginner's Python
Cheat Sheet - Lists

What are lists?

A list stores a series of items in a particular order,
Lists allow you to store sets of information in one

place, whether you have just a few items ar millions

of items. Lists are one of Python's most powerful

features readily accessible to new programmers, and

they fie together many important concepts in
programming.

Defining a list

users = ['wal’', 'bob’, "mia’, "ron’, ‘ned']

Getting the first element
first_user = users[@]

Getting the second element

second_user = users[l]
Getting the last element

newest_user = users[-1]

Modi idual items

e : T et E e T
Changing an element

users[8] = ‘valerie’

users[-2] = "ronald’

ORGANISER

Adding elements

Adding an element to the end of the list

users, append(' any ")

Starting with an empty list

users = []

users.append(‘val’}
users.append('bob*}
users.append(‘mia‘})

Inserting elements at a particular position

users.insert(@, "joe')
users.insert(3, "bea’)

Remaoving elements

- ETIONE

Py y the
Deleting an element by its position
del users[-1]

Removing an item by its value
users.remove('mia‘)

Popping elements

s Te

Pop the last item from a list

mnost_recent_useér = users.pop()
print{most_recent_user)

Pop the first item in a list
first_user = users.pop(@)
print({first_user)

List length

The lenf) funciion retums the number of ilems in & list

Find the length of a list

num_users = len{users)

print{“We hawve " + str{num_users) + " users.")

Haggerston School

Sorting a list

Sorting a list permanently

users.sort()

Sorting a list permanently in reverse alphabetical
order

users.sort(reverses=True)
Sorting a list temporarily

print{sorted{users))
print{serted(users, reverse=True))

Rewversing the order of a list

users.reversef)

Looping through a list

| at are nof inde

Printing all items in a list

for user in users:
print{user)

Printing a message for each item, and a separate
message afterwards

\‘nr‘ user in users:
print{“Welcome, " + user + "1™}

print("wWwelcome, we're glad to see you alll™)

Python Crash Course

Covers Python 3 and Python 2

nostarchpress.com/pythoncrashcourse

Haggerston School

ORGANISER

Beginner's Python
Cheat Sheet —

Testing aqualilyr and haqualty

»»»> 3ge = 18
;:::EE - Simple if statement
If Statements 22> age 1= 18 sge - 19

: if age »= 18:
a nd Wh i I e LOO ps Comparison operators print{"You're old encugh to votel")
e = 13 If-else statements
»»>» age < 21
True age = 17
What are if statements? What are while loops? »>> age <= 21
True if age »= 18:
if statements allow you to examine the current state »»» age » 21 print{“vou're old enough to votel®)
ofa m and respond appropriately 1o that state, False else:
You gamr?rawﬂm a simpﬂ slalaappm:n:a wﬁf checks one >>> age = 21 pFiE] Hiow g T vite gat. =)
condition, of you can create a complex series of if False The if-elif-else chain
statements that idenitfy the exact conditions you're = : _ == ———
looking for. Checking multiple conditions Be =
. . if age < a:
While loops run as long as certain conditions remain price = 8

true. You can use while loops to let your programs elif age < 18:

Checking for inequality Covers Python 3 and Python 2

Simple boolean values

»»» topping = ‘mushrooms®
»»>» topping |= ‘anchowvies' game_active = True
True can_edit = False

(D run as long as your users want them to. I.Iadng and to check mulhpla conditions price = §
else:
o= Conditional Tests 44 :g:—‘: o price = 18
O »»» age_@ »= 21 and age_1 »= 21 print{"Your cost is $" + str{price) + ".")
False
»»> age_1 = 23 =hE L
(f) ¥ a:e:a »= 21 and age_1 >= 21 Conditional tests with lists
Checking for equality e ol
A single equal sign assigns a vaive fo 8 variable. A dowble equal Using or to ch i conditions
— sign (==} checks whether two values are equal PR ChgeRmUN " :
() >>> car = "bm’ el & e Testing if a value is in a list
33> car == b’ 3y age B >= 21 or age 1 = 21 »»» players = [‘al’, 'bea’, ‘cyn’, 'dale']
} True audi True »>» ‘al' in players
3 il :_ ?z . »»» age 8 = 18 True
:’; e »»» age_® »>= 21 or age_1 »= 21 »>> "eric’ in players
alse False False
Q Ignoring case when making a comparison
E w35 cap = "Audi’ Boolean values
»3» car.lower() == "audi’ : ! Py m
o il thon Crash Course

nostarchpress.com/pythoncrashcourse

Computer Science

Beginner's Python
Cheat Sheet —

Functions

What are functions?

Functions are named blocks of code designed to do
one specific job. Functions allow you to write code
once that can then be run whenever you need fo
accomplish the same task. Functions can take in the
information they need, and return the information they
generate. Using functions effectively makes your
programs easier to write, read, test, and fix.

Defining a function

Making a function

def greet_user():
"""pisplay a simple greeting.
print("Hella!"}

greet_user()

Passing information to a function

i eI e, I E CLICHT 5
Passing a single argument
def greet user{username):

"""Display a simple greeting.
print("Hello, + username + *!")

EREY

greet_user('jesse’)
greet_user('diana’)
greet_user('brandon’)

ORGANISER

Positional and keyword arguments

LT Ta
Using positional arguments

def describe_pet(animal, name):
“““pigplay information about a pet.
print(“4nl have a " + animal + “.")
print(“Its name is " + name + ".")

describe_pet(‘hamster', ‘harry')
describe_pet(‘dog', 'willie'}

Using keyword arguments

def describe_pet(animal, name}:
"""pisplay information about a pet.
print{“4nl have a " + animal + “.%)
print{“Its name is " + name + ".")

describe_pet(animal="hamster’', name="harry')
describe_pet(name=‘willie’, animal=‘dog")

Default values

2 |

S0 00 al C
Using a default value

def describe_pet(name, animal='dog"}:
"""pisplay information about a pet.™""
print{"\nI have a " + animal + ".%)
print(“Its name is “ 4 name + *.%)

deseribe _pet{'harry', 'hamster')

describe_pet('willie")

Using None to make an argument optional

def describe_pet{animal, name=None):
"""bisplay information about a pet.
print(“\nI have a " + animal + ".7)
if name:
print("Its name is

+ name + “.%)

describe_pet('hamster®, ‘harry')
describe_pet('snake")

Haggerston School

Return values

Returning a single value

def get_full_name(first, last):
"""Return a neatly formatted full name.
full_name = first + ' ' + last
return full_name.title()

musician = get_full name('jimi‘*, “hendrix’)
print{musician)

Returning a dictionary

def build_person(first, last):
"""Return a dictionary of information
about a person.
person = {'first’: first, '"last': last}
return person

musician = build_person{ ' jimi‘, "hendrix')

print{musiciam)
Retumning a dictionary with optional values

def build person(first, last, agesNone):
"""Return a dictionary of information
about a person.
person = {'First': first, "last': last}
if age:
person|'age’] = age
return person

musician = build_person{'jimi’, 'hendrix’, 27}
print{musician)

musician = build person('janis', "joplin')
print{musician)

Visualizing functions

Try running same of

Python Crash Course

Covers Python 3 and Python 2

nostarchpress.com/pythoncrashcourse

Haggerston School

ORGANISER

SPaG

Grammar: Write in Sentences

A sentence is a group of words that make sense. Sentences start with a capital
letter and end with a full stop, question mark or exclamation mark. All sentences
contain clauses. You should try to use a range of sentences when writing. There
are three main types of sentences.

Connectives and Conjunctions

Simple sentence: A sentence containing one main clause with a subject and a verb. c Eecause
ause o
He reads. And Consequently
Literacy is important. Effect ¥Eerefore
us

Compound sentence: Two simple sentences joined with a conjunction. Both of these simple sentences would make

sense on their own. Varying conjunctions makes your writing more interesting. And

He read his book because it was written by his favourite author. Addition ﬁlz%dition
Literacy is important so students had an assembly about reading. Further (more)
Complex sentence: A longer sentence containing a main clause and one or more subordinate clause(s) used to add Whereas
more detail. The main clause makes sense on its own. However, a subordinate clause would not make sense on its However
own, it needs the main clause to make sense. The subordinate clause is separated by a comma (s) and/or Comparing \S(lengllarly

conjunction. The clause can go at the beginning, middle or end of the sentence. As with/

He read his book even though it was late. seelilil e

Even though it was late, he read his book.

Firstly
Initially

Then
Subsequently
Finally

After

He read his book, even though it was late, because it was written by his favourite author.

Sequencing

How can you develop your sentences?

1. Start sentences in different ways. For example, you can start sentences with adjectives, adverbs or verbs.
Adjective: Funny books are my favourite!
Adverb: Regularly reading helps me develop a reading habit.

Importantly
Verb: Looking at the front cover is a good way to choose a reading book. Emphasi Significantly
. IR In particular

2. Use a range of punctuation. Indeed

3. Nominalisation
Nominalisation is the noun form of verbs; verbs become concepts rather than actions. Nominalisation is often used in Who, despite, until, if,

while, as, although,
even though, that,
which

academic writing. For example: Subordinate

It is important to read because it helps you in lots of ways.
Becomes: Reading is beneficial in many ways.

Germany invaded Poland in 1939. This was the immediate cause of the Second World War breaking out. Becomes:
Germany's invasion of Poland in 1939 was the immediate cause of the outbreak of the Second World War.

Literacy Knowledge Organiser

Haggerston School

ORGANISER

SPaG: Spelling and Punctuation

o
7p Punctuation Spelling
(- Use a range of punctuation accurately when you are writing. Use the following strategies to help you spell tricky words.
O . Full stop Marks the end of a sentence. 1. Break it into sounds (d-i-a-r-y)
= , Comma Separates the items on a list or the clauses in a sentence. 2. Break it into syllables (re-mem-ber)
* Apostrophe Shows possession (belonging) or omission (letters tak en away). 3. Break it into affixes (dis + satisfy)
O “" Quotation marks Indicate a quotation or speech. 4. Use a mnemonic (necessary - one collar, two sleeves)
O *" Inverted commas Indicate a title. 5. Refer to word in the same family (muscle - muscular)
O ? Question mark Used at the end of a sentence that asks a question. 6. Say it as it sounds - spell speak (Wed-nes day)
g ! Exclamation mark Used at the end of a sentence to show surprise or shock. 7. Words within words (Parliament - | AM parliament)
- : Colon Used to introduce a list or an explanation/ elaboration/ answer to 8. Refer to etymology (bi + cycle = two + wheels)
\ what preceded. A capital letter is only needed after a colon if you are writing
a proper noun (name of person or place) or two or more sentences. 9. Use analogy (bright, light, night, etc)
>~ ; Semi-colon Joins two closely related clauses that could stand alone as 10. Use a key word to remember a spelling rule (horrible /drinkable
O sentences. Also used to separate items on a complicated list. A capital letter for -ible & -able / advice/advise for -ice & -ise)
@) is not needed after a semi-colon unless you are writing a proper noun (name
of person or place). 1. Apply spelling rules (writing, written)
+— Brackets Used to add extra information which is not essential in the 12. Learn by sight (look-cover-say-write check)
o— sentence.
—

