KNOWLEDGE ORGANISER GUIDANCE

It is advised that you print the relevant subject knowledge organisers and have them available to you when needed at all times.

An alternative recommendation would be to download the knowledge organisers for your subjects onto your electronic devices so you can access them when needed.

With the knowledge organiser you should make revision cards to help revise and build in time during independent study to test yourself weekly on the content.

While you have independent study, you should use your Knowledge Planner to study the relevant subject's Knowledge Organiser and learn the information provided.

Haggerston School

SIXTH FORM KNOWLEDGE ORGANISER

Maths

2023/2024

Aspiration Creativity Character

Haggerston School

Aspiration Creativity Character

Mechanics

atics

Е

Math

		Yea	r 1: 1. Modeling in Mechanics		
Particle	Dimensions of the object are negligible • Mass of the object is concentrated at a single point • Rotational forces and air resistance can be ignored		• Objects in contact with the surface experience a frictional force if they are moving or acted on by a force	Friction	A force which opposes the motion between two rough surfaces
Rod	All dimensions but one are negligible, like a pole or a beam • No thickness • Ridged (does not bend or buckle)	All dimensions but one are negligible, like a pole Rigid thin length of material or a beam Wire · No thickness Treated as one dimensional · Ridged (does not bend or buckle) Treated as one dimensional		Tension	The force acting on an object if it is being pulled by string/rod
Lamina	Object with area but negligible thickness, like a sheet of paper • Mass is distributed across a flat surface	Object with area but negligible thickness, like a sheet of paperParticle with a hole in it for threading on a wire or string • Moves freely along a wire or string • Tension is the same on either side of the beadThe transport transport		Thrust/ compression	The force acting on an object if it is being pushed by a rod
Centre of Mass	The geometrical centre of an object	Peg	A support from which a body can be suspended or rested • Dimensionless and fixed • Can be rough or smooth as specified in question	Buoyancy	The upward force on a body that allows it to float or rise when submerged in a liquid
Uniform body	Mass is distributed evenly • Mass of the object is concentrated at a single point at the centre of mass	Air resistance	Resistance experienced as an object moves through the air • Usually modeled as being negligible	Vector	A quantity that has both magnitude and direction
Light object	Mass is small compared to other masses, like string or a pulley • Treat object as having zero mass • Tension the same at both ends of a light string	Gravity	 Force of attraction between all objects, acceleration due to gravity is denoted by g All objects with mass are attracted towards the Earth Earth's gravity is uniform and acts vertically downwards g is constant and is taken as 9.8ms-2, unless otherwise stated in the question 	Scalar	A quantity that has magnitude only
Inextensib string/rod	A string/rod that does not stretch under load • Acceleration is the same in objects connected by a taught inextensible string/rod	Weight	Gravitational force of an object which acts vertically downwards		
Smooth surface	 Assume that there is no friction between the surface and any object on it 	Normal reaction	The force which acts perpendicular to a surface when an object is in contact with the surface	1 Ing	

Mechanics

Aspiration Creativity Character

Haggerston School

2. Constant Acceleratio		rces and Motion					
Velocity is the rate of change of	Displacement	F =	ma	A A A A A A A A A A A A A A A A A A A			
Acceleration is the rate of change of	Velocity	W =	mg				
<i>v</i> =	u + at	Neurose ele desta de la com	An object at rest will stay at rest and an object moving with				
<i>s</i> =	$\binom{u+v}{t}$	Newton's 1st law	unless an unbalanc	ced force acts on an object.			
	$\left(\frac{2}{2}\right)^{l}$	Newton's 2nd law	The force needed	to accelerate a particle is equal to the product of			
$v^2 =$	$u^2 + 2as$		the mass of the particular	article and the acceleration produced. (F=ma)			
<i>s</i> =	1 ,2	Newton's 3rd law	For every action th	here is an equal and opposite reaction.			
	$ut + \frac{1}{2}at^2$		Year 2: 1. Moments				
<i>s</i> =	$vt - \frac{\overline{1}}{2}at^2$	Clockwise moment of F about P =		F × d			
-		Clockwise moment of F about P =		F sin θ x d			
σ =	$9.8 \mathrm{m}\mathrm{s}^{-2}$	Coplanar forces		Forces that act in the same plane			
0	5.0 5	Resultant moment		The sum of the moments acting on a body			
4. Variable Acceleration		When a rigid body is in equilibrium		The resultant force in any direction is ON and the resultant moment			
v =	ds			about any point is ON			
	dt	Non-uniform rod		The centre of mass is not at midpoint of the rod			
<i>a</i> =	$\frac{dv}{dt} = \frac{d^2s}{dt^2}$	When a body is on the a pivot	e point of tilting abc	out The reaction at any other support (or the tension in any other wire or string) is 0			
	$\frac{dt}{dt}$ $\frac{dt^2}{dt^2}$	2. Forces & Friction					
s = v dt		The component of a force		The effect of the force in the direction of motion			
<i>v</i> =	J f	The component of a for in a certain direction is	orce magnitude F s	$Fcos\theta$, where θ is the size of angle between the force and the direction			
	Jadt	Fmax=		μR μ is the coefficient of friction, R is the normal reaction between the two surfaces			
		Resultant moment		The sum of the moments acting on a body			

Aspiration Creativity Character

Mechanics										
3. Proj	jectile	s			4. Application of Forces					
The horizontal motion of a projectile is modeled as having		Constant velocity (a = 0)		A particle or rig if	A particle or rigid body is in static equilibrium It is at reference of the static equilibrium It is at referen		est and the resultant force acting on the particle is			
You can use the formula s=	v	rt			Limiting equilib	prium	When a	body is on the point of moving		
The vertical motion of a projecti	ile C	Constant	acceler	ation doe	Fmax is reache	d when	The boo	dy is in limiting equilibrium		
is modeled as having	to	o gravity	∕ (a=g)		The force of fri	iction F is such that	F ≤µR			
Horizontal component of the inivelocity for projected particle	itial U	Jcos α			The direction o to	ection in which the body would move if the al force were absent				
Vertical component of the initial velocity for projected particle		Jsin α			For a rigid body	y in static equilibrium	 The b directio 	body is stationary \bullet The resultant force in any ion is 0 \bullet The resultant moment is 0		
U=		nitial vel	ocity		5. Further Kinematics		nematics			
α =		Angle above horizontal		Position vector for particle r =		r _o + vt				
A projectile reaches its point of		Vertical component of its		r _o =	r _o =		Position vector for starting point			
greatest height when the		elocity i	s equal t	to 0	v=			Constant velocity		
Time of flight=		2 <u>Usina</u>		Displacement from initial position at time t		vt				
			g		Object moving	in plane with constant accelerati	on v=	u + at		
Time to reach greatest height=			<u>Usina</u> g		Object moving	in plane with constant accelerati	on r=	$\frac{1}{2}$		
Range on horizontal plane=		2			u=		Initial velocity			
		Usin2a. g		a=		Acceleration				
Equation of trajectory		$(1+tan \alpha^2)$		V=		Velocity at time t				
		y = xta	$n\alpha - gx^2$	2 <i>U</i> ²	r=	r=		Displacement at time t		
У		/ertical h	eight of	^f particle	lf r = xi + yj, v=			$r i y j_{dt}^{dt} = \cdot = x^{\cdot} + \cdot$		
x		lorizonta point of p	al distan projectic	ice from	lf r = xi + yj, a=			$\frac{dt^2}{r i yj} = x^2 + z^2$		
g	A	Accelerat	ion due	to gravity	v=			$\int a dt$		
					r=			$\int v dt$		

S

Aspiration Creativity Character

Stati	stics						
	1. Data Collection						
Population The whole set of items that are of interest							
Census	Observes or measures every member of the population						
Sample	A selection of observations taken from a subset of the population						
Sampling Unit	Individual units of a population						
Sampling Frame	A list of sampling units which are named or numbered						
Random Sample	Every member of the population or sample has an equal chance of being selected						
Systematic Sampling	The population is placed in an ordered list and the sample is chosen at regular intervals, choosing the start position randomly						
Stratified Sample	The population is proportionally divided into mutually exclusive groups and a random sample is taken from each group						
Quota Sampling (no n-random)	An interviewer or researcher select a sample until each quota is filled that represents the characteristics of the whole population						
Opportunity Sampling (non- random)	Sample is taken from people who are available at the time the study is carried out and who fit the criteria you are looking for						

S S

Mathemati

			Year 1: 0. Large Data S	et					
Trace (Tr)		Rainfall less than).05 mm						
Beaufort Scale Anoth		Another measure	nother measure for mean wind speed						
Knot A nautical		A nautical mile pe	nautical mile per hour (1kn = 1.15mph)						
Oktas		Measures cloud o	cover, eighths of the sky cove	ered by c	loud				
Decametres (Dm)		Measures daily m daylight	leasures daily mean visibility, greatest horizontal distance at which an object can be seen in aylight						
Hectopascals (hPa)		Measures mean p	pressure						
2. Measures of Location & Spread			3	. Represe	entations of Data				
Mean (Population)	μ		Common Definition for Outlier	Greate - Q)	r than Q_3 + k(Q_3 - Q_1) Less than Q_1 - k(Q_3				
Mean (Sample)	$\bar{x} = \frac{\Sigma}{2}$	¹ x	Cleaning Data	The pr	he process of removing anomalies from data se				
	1	$n = \sum_{x \in \mathcal{L}} \sum_{x \in \mathcal{L}}$	4. Correlation						
$S_{xx} =$ Variance $\sigma^2 =$	$\frac{S_{\chi\chi}}{m} =$	$\frac{\sum x^2}{x^2} - \bar{x}^2$	Interpolation		Making an estimate of values within the range of the given data				
n $nStandard \sqrt{Variance}$		iriance	Extrapolation		Making a prediction based on a value outside the range of the given data				
General formula		x – a	5. Probability						
for coded data	<i>y</i> =	b	Event	A col	collection of one or more outcomes				
Mean (coded)	$\bar{y} =$	$\frac{\bar{x}-a}{\bar{x}-a}$	Sample Space Th		The set of all possible outcomes				
		D ₀	Mutually Exclusive	Two	Two events that cannot occur at the same time				
Standard deviation (coded)	$\sigma_y =$	$\frac{b}{b}$	Independent events	Even	Events that have no effect on one another				
		P(A')	Proba	Probability A does not occur					
		P(A B)	Proba	Probability A occurs given that B has occurred					
			$P(A \cup B)$ for mutually exclusive events	P(A) -	+ P(B)				
			$P(A \cap B)$ for independent events only	ent P(A) x P(B)					

Mathematics

Haggerston School

Aspiration Creativity Character

Statistics		6. Statistical Distributions			Year 2: 1. Regression, Correlation & Hypothesis Testing						
		Criteria for Binomial	 Fixed number of trials Two possible outcomes (success or fate) 	ilure)		y = kx ⁿ	log log y = a=constar	log <i>log</i> nt	; log a + n(logx), n=gradient, log		
		Distribution:	 Fixed probability of success Trials are independent of each other 	ked probability of success ials are independent of each other $y = ka^x$ $\log \log y = l$ $\log a = cons$		log log stant	log <i>log a + logb</i> (x), log b=gradient, stant				
	Bin		unction P(X = x) $\binom{n}{x} p^{x} (1-p)^{n-x}$			The PMCC takes values between	es values -1 and 1				
			n = number of trials, p = probability of success			2.	bility				
7. Hypothesis Testing					┤╏	Ω		Interse	ction (both must happen)		
Ho	Ho The null hypothesis				┤╏	U =		Union (either or both can happen)		
	H1 I he alternative hypothesis					A'		The co	mplement of A (not A)		
Critical Region	Critical Region A region of the probability distribution which, if the test statistic falls within it, work cause you to reject the null hypothesis					P(B I A)	Probability of B given that A has already occurred				
Critical Value	The first va	first value to fall within the critical region				Ear independent events $P(A \mid P) = P$			$D(\Lambda \mid \mathbf{R}^{\prime}) - D(\Lambda)$		
Significance Level	The probal	bility of incorrectly rejecting	g the null hypothesis		╽┝	For independent events	P(ATB)=	PAIB) = P(A)		
Step 1	Define test	t statistic X , write its distrib	ution and define the meaning of p in contex	αt		For independent events $P(B A) = P(B A')$) = P(B)			
Step 2	Write null	and alternative hypotheses			P(A U B) =			P(A) + I	Р(В) - Р(А () В)		
Step 3	Assume Ho	is true and determine prob	ability of observed test statistic			P(B I A)=			?(А (``) В) Р(А)		
Step 4	Two-part o	conclusion: 1. Do we reject	H₀ or not? 2. Put in context of original prob	lem.		$P(A \cap B) = P(B \mid A) \times P(A)$					
		3. The Normal Distrib	ution	The s	ta	undard normal distributio	n has mea	n=	0		
The area under a con	tinuous	us 1			-+-	undard normal distributio	n has stan	dard			
Normally distributed	random var	riable de			ntic	ion=			1		
X^{\sim} N(μ , σ^2)		Norm	nal	al approximation for Binomial µ np							
		• Parameters μ , the p	population mean and σ^2 , the population variance	Norm	nal	l approximation for Binor	mial σ		$\sqrt{np(1-p)}$		
The normal distributi	on has	Has a bell shaped cu	urve with asymptotes at each end	Samp	ble	mean \overline{X}			N($\mu, \frac{\sigma^2}{n}$)		
	The normal distribution has		al area under the curve equal to 1 nts of inflection at $\mu - \sigma$		$Z = \frac{\overline{X-\mu}}{\frac{\sigma}{\sqrt{n}}}, Z$				N(0,1)		

S S

Mathemati

Haggerston School

Aspiration Creativity Character

Year 1 & 2:]	-			-			
MEMORISE THESE	Trigger words	Annotate	Trigger wo	rds	Annotate	Tri	gger words	Annotate		
	Discrimina	int rule		Modelli	ing		G	Gradient		
	no real solutions	$b^2 - 4ac < 0$	Linear		y = ax + b	Increasing functior		on dy/dx > 0		
	repeated root	$b^2 - 4ac = 0$			$y = a(x + b)^2 + c$	Decre	easing functi	on dy/dx < 0		
	two equal roots	$b^2 - 4ac = 0$	Quadratio	;	$y = ax^2 + bx + c$	Sta	itionary point	t dy/dx = 0		
	real solutions	$b^2 - 4ac \ge 0$		у	- = a(x + b)(x + c)	Minim	num / maxim	um dy/dx = 0		
	<u>distinct</u> real	$b^2 - 4ac > 0$	T .		y = Rsin(ax + b)		Tangent	same gradient		
	solutions	0 - 400 > 0		ry	y = Rcos(ax + b)		Normal	perp. gradient		
	Trigger words	Annotate	Exponenti	al	y = ap _×	Trigę	ger words	Annotate		
	Coordinat	e axis	Logs		lny = lna + xlnb		Inte	ersections		
	At x-axis	y = 0	Trigger w	ords	Annotate	in	tersect	substitute / sim. eqs		
	At y-axis	x = 0	meet			substitute / sim. eqs				
Trigger words	Annot	ate	Nature	of statio	onary point	c	rosses	substitute / sim. eqs		
Trig ide	ntities		Minimum	point	$d^2y/dx^2 > 0$	at	one point	$b^2 - 4ac = 0$		
· · · · · · · · · · · · · · · · · · ·	tor 0	$\sin \theta$	Maximum point $d^2y/dx^2 < 0$ tangentInflection point $d^2y/dx^2 = 0$ at two points / twice		$d^2 v/dx^2 < 0$	to	angent	$b^2 - 4ac = 0$		
$sin^2x + cos^2x \equiv 1$	$\tan\theta = -$	$\cos heta$			$b^2 - 4ac > 0$					
Trig gr	aphs				$dy/dx^2 = 0$		never	b² - 4ac < 0		
	1				Act	ion words to	BOX			
Sine	10		Exact	e, π, √,	, trig, a/b, logs	State	J	lust answer needed		
			Show that	Every st	ep needed	Determine	J	lustification required		
Cosine		20 343	Prove	Formal,	rigorous steps	Find / Solve Calculate	/	Normal working required		
Tan		10 10	Hence	Use par	t a) or b)	Show detailedreas	oning j	Every step needed, ustification required		
		10	Verify	Sub valu	ues to show	Sketch	5	Shape, intersections		

Aspiration Creativity Character

Year 2 addi MEMORISE T	tions: HESE	Formulas to know off by heart						
Trigger words	Annotate	$\sin^2 x + \cos^2 x \equiv 1$	$\tan\theta = \frac{\sin\theta}{\cos\theta}$	Chain rule $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$	Reciprocal $\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$			
Stati	stics	$\sec x = \frac{1}{\cos x}$	$\sin 2A \equiv 2 \sin A \cos B$	Parametric diff. $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dx}}$	Parametric integration $\int y \frac{dx}{dt} dt$			
Probability distribution	A table of probabilities			Product rule d_1 , d_2 , d_3 ,	Quotient rule $du dv$			
Trigger		$\csc x = \frac{1}{\sin x}$	$\cos 2A \equiv \cos^2 A - \sin^2 A$	$\frac{dy}{dx} = v\frac{du}{dx} + u\frac{dv}{dx}$	$\frac{dy}{dx} = \frac{v\frac{-u}{dx} - u\frac{-u}{dx}}{v^2}$			
words	Annotate	$\cot x = \frac{1}{1}$	$\cos 2A = 2\cos^2 A - 1$	$u = \sin x$	$\frac{dy}{dx} = \cos x$			
Mech	anics	tan x		9				
Speed	Pythagoras, magnitude	$1 + tan^2 x \equiv sec^2 x$	$\cos 2A \equiv 1 - 2\sin^2 A$	$y = \cos x$	$rac{dy}{dx}=\ -\sin(x)$			
Trigger words	Annotate	$1 + \cot^2 x \equiv \csc^2 x$	$\tan 2A \equiv \frac{2\tan A}{1 - \tan^2 A}$	$y=e^x$	$rac{dy}{dx}=e^x$			
Vec	tors	$\int \frac{1}{x} dx =$	ln x + c	$y = \ln x$	$\frac{dy}{dx} = \frac{1}{x}$			
AB =	$\hat{\mathbf{u}} = \frac{\mathbf{u}}{ \mathbf{u} }$	Integration LATE by parts $\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$	$\int \frac{f'(x)}{f(x)} dx = \ln f(x) $	$y = a^x$	$rac{dy}{dx} = a^x \ln a$			

Mathematic

S

Haggerston School

Aspiration Creativity Character

SPaG () Gram

S

• _____

σ

 \mathbf{O}

 \bigcirc

 \mathbf{O}

 $\overline{\mathbf{O}}$

≥ 0

>

O

σ

0

Grammar: Write in Sentences

A sentence is a group of words that make sense. Sentences start with a capital letter and end with a full stop, question mark or exclamation mark. All sentences contain clauses. You should try to use a range of sentences when writing. There are three main types of sentences.

Simple sentence: A sentence containing one main clause with a **subject** and a **verb**.

He reads.

Literacy is important.

<u>Compound sentence:</u> Two simple sentences joined with a <u>conjunction</u>. Both of these simple sentences would make sense on their own. Varying conjunctions makes your writing more interesting. **He read** his book <u>because</u> **it was written** by his favourite author. **Literacy is** important so **students had** an assembly about reading.

<u>Complex sentence</u>: A longer sentence containing a main clause and one or more <u>subordinate clause(s)</u> used to add more detail. The main clause makes sense on its own. However, a subordinate clause would not make sense on its own, it needs the main clause to make sense. The subordinate clause is separated by a comma (s) and/or conjunction. The clause can go at the beginning, middle or end of the sentence.

He read his book even though it was late.

<u>Even though it was late,</u> he read his book. He read his book, <u>even though it was late</u>, because it was written by his favourite author.

How can you develop your sentences?

1. Start sentences in different ways. For example, you can start sentences with adjectives, adverbs or verbs.

Adjective: Funny books are my favourite!

Adverb: Regularly reading helps me develop a reading habit.

Verb: Looking at the front cover is a good way to choose a reading book.

2. Use a range of **punctuation**.

3. Nominalisation

Nominalisation is the noun form of verbs; verbs become concepts rather than actions. Nominalisation is often used in academic writing. For example:

It is important to read because it helps you in lots of ways.

Becomes: Reading is beneficial in many ways.

Germany invaded Poland in 1939. This was the immediate cause of the Second World War breaking out. Becomes: Germany's invasion of Poland in 1939 was the immediate cause of the outbreak of the Second World War.

Connectives and Conjunctions						
Cause And Effect	Because So Consequently Therefore Thus					
Addition	And Also In addition Further (more)					
Comparing	Whereas However Similarly Yet As with/ equally/Likewise					
Sequencing	Firstly Initially Then Subsequently Finally After					
Emphasis	Importantly Significantly In particular Indeed					
Subordinate	Who, despite, until, if, while, as, although, even though, that, which					

Aspiration Creativity Character

SPaG: Spelling and Punctuation

Punctuation

- Use a range of punctuation accurately when you are writing. . Full stop Marks the end of a sentence.
- , **Comma** Separates the items on a list or the clauses in a sentence.
- ' Apostrophe Shows possession (belonging) or omission (letters tak en away).
- "" Quotation marks Indicate a quotation or speech.
- '' Inverted commas Indicate a title.
- **? Question mark** Used at the end of a sentence that asks a question.
- ! Exclamation mark Used at the end of a sentence to show surprise or shock.
- **: Colon** Used to introduce a list or an explanation/ elaboration/ answer to what preceded. A capital letter is only needed after a colon if you are writing a proper noun (name of person or place) or two or more sentences.
- ; Semi-colon Joins two closely related clauses that could stand alone as sentences. Also used to separate items on a complicated list. A capital letter is not needed after a semi-colon unless you are writing a proper noun (name of person or place).
- **Brackets** Used to add extra information which is not essential in the sentence.

Spelling

Use the following strategies to help you spell tricky words.

- 1. Break it into sounds (d-i-a-r-y)
- 2. Break it into syllables (re-mem-ber)
- 3. Break it into affixes (dis + satisfy)
- 4. Use a mnemonic (necessary one collar, two sleeves)
- 5. Refer to word in the same family (muscle muscular)
- 6. Say it as it sounds spell speak (Wed-nes day)
- 7. Words within words (Parliament I AM parliament)
- 8. Refer to etymology (bi + cycle = two + wheels)
- 9. Use analogy (bright, light, night, etc)

10. Use a key word to remember a spelling rule (horrible/drinkable for -ible & -able / advice/advise for -ice & -ise)

- 11. Apply spelling rules (writing, written)
- 12. Learn by sight (look-cover-say-write check)