KNOWLEDGE ORGANISER GUIDANCE

It is advised that you print the relevant subject knowledge organisers and have them available to you when needed at all times.

An alternative recommendation would be to download the knowledge organisers for your subjects onto your electronic devices so you can access them when needed.

With the knowledge organiser you should make revision cards to help revise and build in time during independent study to test yourself weekly on the content.

While you have independent study, you should use your Knowledge Planner to study the relevant subject's Knowledge Organiser and learn the information provided.

HaggerstonSchool

SIXTH FORM KNOWLEDGE ORGANISER

Ma†hs

2023/2024

SIXTH FORM KNOWLEDGE ORGANISER

Haggerston School Aspiration Creativity Character

Mechanics
多

Year 1: 1. Modeling in Mechanics					
Particle	Dimensions of the object are negligible - Mass of the object is concentrated at a single point - Rotational forces and air resistance can be ignored	Rough surface	- Objects in contact with the surface experience a frictional force if they are moving or acted on by a force	Friction	A force which opposes the motion between two rough surfaces
Rod	All dimensions but one are negligible, like a pole or a beam - No thickness - Ridged (does not bend or buckle)	Wire	Rigid thin length of material - Treated as one dimensional	Tension	The force acting on an object if it is being pulled by string/rod
Lamina	Object with area but negligible thickness, like a sheet of paper - Mass is distributed across a flat surface	Bead	Particle with a hole in it for threading on a wire or string - Moves freely along a wire or string - Tension is the same on either side of the bead	Thrust/ compression	The force acting on an object if it is being pushed by a rod
Centre of Mass	The geometrical centre of an object	Peg	A support from which a body can be suspended or rested - Dimensionless and fixed - Can be rough or smooth as specified in question	Buoyancy	The upward force on a body that allows it to float or rise when submerged in a liquid
Uniform body	Mass is distributed evenly - Mass of the object is concentrated at a single point at the centre of mass	Air resistance	Resistance experienced as an object moves through the air - Usually modeled as being negligible	Vector	A quantity that has both magnitude and direction
Light object	Mass is small compared to other masses, like string or a pulley - Treat object as having zero mass - Tension the same at both ends of a light string	Gravity	Force of attraction between all objects, acceleration due to gravity is denoted by g - All objects with mass are attracted towards the Earth - Earth's gravity is uniform and acts vertically downwards $\cdot \mathrm{g}$ is constant and is taken as $9.8 \mathrm{~ms}-2$, unless otherwise stated in the question	Scalar	A quantity that has magnitude only
Inextensible string/rod	A string/rod that does not stretch under load - Acceleration is the same in objects connected by a taught inextensible string/rod	Weight	Gravitational force of an object which acts vertically downwards		-
Smooth surface	- Assume that there is no friction between the surface and any object on it	Normal reaction	The force which acts perpendicular to a surface when an object is in contact with the surface		-

SIXTH FORM KNOWLEDGE ORGANISER

HaggerstonSchool

Mechanics

2. Constant Acceleration	
Velocity is the rate of change of ...	Displacement
Acceleration is the rate of change of ...	Velocity
$v=$	$u+a t$
$s=$	$\left(\frac{u+v}{2}\right) t$
$v^{2}=$	$u^{2}+2 a s$
$s=$	$u t+\frac{1}{2} a t^{2}$
$s=$	$v t-\frac{1}{2} a t^{2}$
$\mathrm{g}=$	$9.8 \mathrm{~m} \mathrm{~s}^{-2}$
4. Variable Acceleration	
$v=$	$\frac{d s}{d t}$
$a=$	$\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}$
$s=$	$\int v d t$
$v=$	$\int a d t$

SIXTH FORM KNOWLEDGE ORGANISER

HaggerstonSchool Aspiration Creativity Character

Mechanics

3. Projectiles	
The horizontal motion of a projectile is modeled as having...	Constant velocity ($\mathrm{a}=0$)
You can use the formula $s=$	vt
The vertical motion of a projectile is modeled as having...	Constant acceleration doe to gravity ($\mathrm{a}=\mathrm{g}$)
Horizontal component of the initial velocity for projected particle	$U \cos a$
Vertical component of the initial velocity for projected particle	Usin α
$\mathrm{U}=$	Initial velocity
$\alpha=$	Angle above horizontal
A projectile reaches its point of greatest height when the...	Vertical component of its velocity is equal to 0
Time of flight=	$\frac{2 U \sin \alpha}{g}$
Time to reach greatest height=	$\frac{U \sin \alpha}{g}$
Range on horizontal plane=	$\begin{gathered} 2^{2} 2 \alpha \\ \frac{\sin ^{2} \alpha}{g} \end{gathered}$
Equation of trajectory	$y=x \tan \alpha-g x^{2} 2 U^{\left(1+\tan \alpha^{2}\right)}$
y	Vertical height of particle
x	Horizontal distance from point of projection
g	Acceleration due to gravity

4. Application of Forces	
A particle or rigid body is in static equilibrium if...	It is at rest and the resultant force acting on the particle is 0
Limiting equilibrium	When a body is on the point of moving
Fmax is reached when...	The body is in limiting equilibrium
The force of friction F is such that	$F \leq \mu \mathrm{R}$
The direction of the frictional force is opposite to...	The direction in which the body would move if the frictional force were absent
For a rigid body in static equilibrium	- The body is stationary \bullet The resultant force in any direction is $0 \bullet$ The resultant moment is 0

5. Further Kinematics	
Position vector for particle $\mathrm{r}=$	$r_{0}+v t$
$r_{0}=$	Position vector for starting point
$\mathrm{V}=$	Constant velocity
Displacement from initial position at time t	vt
Object moving in plane with constant acceleration v=	$u+a t$
Object moving in plane with constant acceleration r=	$\begin{gathered} \frac{1}{4} \\ \mathbf{u t}+\mathbf{t}^{2} \\ 2 \end{gathered}$
$\mathrm{u}=$	Initial velocity
$a=$	Acceleration
$\mathrm{V}=$	Velocity at time t
$r=$	Displacement at time t
If $r=x i+y j, v=$	$r i y j d t^{d r}=\cdot=x^{\cdot}+\cdot$
If $r=x i+y j, a=$	$\begin{aligned} & \frac{d r^{2}}{}=\cdot=x^{\cdot}+\cdots \\ & r i y j d \underline{d v}={ }_{d t^{2}} \end{aligned}$
$\mathrm{V}=$	$\int a d t$
$r=$	$\int v d t$

HaggerstonSchool Aspiration Creativity Character

Statistics

1. Data Collection	
Population	The whole set of items that are of interest
Census	Observes or measures every member of the population
Sample	A selection of observations taken from a subset of the population
Sampling Unit	Individual units of a population
Sampling	A list of sampling units which are named or numbered
Random Sample	Every member of the population or sample has an equal chance of being selected
Systematic Sampling	The population is placed in an ordered list and the sample is chosen at regular intervals, choosing the start position randomly
Stratified Sample	The population is proportionally divided into mutually exclusive groups and a random sample is taken from each group
Opportunity Sampling (non- Random) Sampling (no n-random)	An interviewer or researcher selects a sample until each quota is filled that represents the characteristics of the whole population are available at the time the study is carried out and who fit the criteria you are looking for

Year 1: 0. Large Data Set

Trace (Tr)	Rainfall less than 0.05 mm
Beaufort Scale	Another measure for mean wind speed
Knot	A nautical mile per hour (1 $\mathrm{kn}=1.15 \mathrm{mph})$
Oktas	Measures cloud cover, eighths of the sky covered by cloud
Decametres (Dm)	Measures daily mean visibility, greatest horizontal distance at which an object can be seen in daylight
Hectopascals (hPa)	Measures mean pressure

2. Measures of Location \& Spread		3. Representations of Data	
Mean (Population)	μ	Common Definition for Outlier	Greater than $Q_{3}+k\left(Q_{3}-Q_{1}\right)$ Less than $Q_{1}-k\left(Q_{3}\right.$ - Q)
Mean (Sample)	$\bar{x}=\frac{\Sigma x}{n}$	Cleaning Data	The process of removing anomalies from data set
	n	4. Correlation	
$S_{\text {xx }}=$	$\frac{s_{x x}}{n}=\frac{\sum x^{2}}{n}-\bar{x}^{2}$	Interpolation	Making an estimate of values within the range of the given data
Variance $\sigma^{2}=$			
Standard Deviation $\sigma=$	$\sqrt{\text { Variance }}$	Extrapolation	Making a prediction based on a value outside the range of the given data
General formula for coded data	$y=\frac{x-a}{b}$	5. Probability	
		Event	A collection of one or more outcomes
Mean (coded)	$\bar{y}=\frac{\bar{x}-a}{b}$	Sample Space	The set of all possible outcomes
		Mutually Exclusive	Two events that cannot occur at the same time
Standard deviation (coded)	$\sigma_{y}=\frac{\sigma_{x}}{b}$	Independent events	Events that have no effect on one another
		P(A')	Probability A does not occur
		$\mathrm{P}(\mathrm{A} \mid \mathrm{B})$	Probability A occurs given that B has occurred
		$P(A \cup B)$ for mutually exclusive events	$P(A)+P(B)$
		$P(A \cap B)$ for independent events only	$P(A) \times P(B)$

SIXTH FORM KNOWLEDGE ORGANISER

Haggerston School Aspiration Creativity Character

Statistics

SIXTH FORM KNOWLEDGE ORGANISER

HaggerstonSchool
Aspiration Creativity Character

Year 1 \& 2: MEMORISE THESE

Trigger words	Annotate
Discriminant rule	
no real solutions	$b^{2}-4 a c<0$
repeated root	$b^{2}-4 a c=0$
two equal roots	$b^{2}-4 a c=0$
real solutions	$b^{2}-4 a c \geqslant 0$
distinctreal	$b^{2}-4 a c>0$
solutions	

Trigger words	Annotate
Coordinate axis	
At x-axis	$y=0$
At y-axis	$x=0$

| Trigger words | Annotate | |
| :---: | :---: | :---: | :---: |
| $\sin ^{2} x+\cos ^{2} x \equiv 1$ | $\tan \theta=\frac{\sin \theta}{\cos \theta}$ | |
| Trig graphs identities | | |
| Sine | | |
| Cosine | | |
| Tan | | |

Trigger words	Annotate
Gradient	
Increasing function	$d y / d x>0$
Decreasing function	$d y / d x<0$
Stationary point	$d y / d x=0$
Minimum / maximum	$d y / d x=0$
Tangent	same gradient
Normal	perp. gradient
Trigger words	Annotate
Intersections	

Trigger words	Annotate	intersect	substitute / sim. eqs.
		meet	substitute / sim. eqs.
Nature of stationary point		crosses	substitute / sim. eqs.
Minimum point	$d^{2} y / d x^{2}>0$...at one point	$b^{2}-4 a c=0$
Maximum point	$d^{2} y / d x^{2}<0$	tangent	$b^{2}-4 a c=0$
Inflection point	$d^{2} y / d x^{2}=0$...at two points / twice	$b^{2}-4 a c>0$
		...never	$b^{2}-4 a c<0$

Action words to BOX			
Exact	$e, \pi, \sqrt{ }$, trig, a / b, logs	State	Just answer needed
Show that	Every step needed	Determine	Justification required
Prove	Formal, rigorous steps	Find / Solve / Calculate	Normal working required
Hence	Use part a) or b)	Show detailedreasoning	Every step needed, justification required
Verify	Sub values to show	Sketch	Shape, intersections

Year 2 additions:
MEMORISE THESE

Trigger words	Annotate
Statistics	
Probability distribution	A table of probabilities

Trigger words	Annotate
Mechanics	
Speed	Pythagoras, magnitude

Trigger words	Annotate

Vectors

$\overrightarrow{A B}=$	$\overrightarrow{O B}-\overrightarrow{O A}$
Unit vector	$\hat{\mathbf{u}}=\frac{\mathbf{u}}{\|\mathbf{u}\|}$

Formulas to know off by heart			
$\sin ^{2} x+\cos ^{2} x \equiv 1$	$\tan \theta=\frac{\sin \theta}{\cos \theta}$	Chain rule $\quad \frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$	Reciprocal $\quad \frac{d y}{d x}=\frac{1}{\frac{d x}{d y}}$
$\sec x=\frac{1}{\cos x}$	$\sin 2 A \equiv 2 \sin A \cos B$	Parametric diff. $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$	Parametric integration $\int y \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t$
$\operatorname{cosec} x=\frac{1}{\sin x}$	$\cos 2 A \equiv \cos ^{2} A-\sin ^{2} A$	Product rule $\frac{d y}{d x}=v \frac{d u}{d x}+u \frac{d v}{d x}$	Quotient rule $\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}$
$\cot x=\frac{1}{\tan x}$	$\cos 2 A \equiv 2 \cos ^{2} A-1$	$y=\sin x$	$\frac{d y}{d x}=\cos x$
$1+\tan ^{2} x \equiv \sec ^{2} x$	$\cos 2 A \equiv 1-2 \sin ^{2} A$	$y=\cos x$	$\frac{d y}{d x}=-\sin (x)$
$1+\cot ^{2} x \equiv \operatorname{cosec}^{2} x$	$\tan 2 A \equiv \frac{2 \tan A}{1-\tan ^{2} A}$	$y=e^{x}$	$\frac{d y}{d x}=e^{x}$
$\int \frac{1}{x} d x=$	$\ln \|x\|+c$	$y=\ln x$	$\frac{d y}{d x}=\frac{1}{x}$
Integration by parts $\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x$	$\int \frac{f^{\prime}(x)}{f(x)} d x=\ln \|f(x)\|$	$y=a^{x}$	$\frac{d y}{d x}=a^{x} \ln a$

$\cos (\theta)=\frac{\text { adj }}{\text { hyp }}$

SIXTH FORM KNOWLEDGE ORGANISER

HaggerstonSchool

 Aspiration Creativity CharacterSPaG
Grammar: Write in Sentences
A sentence is a group of words that make sense. Sentences start with a capital letter and end with a full stop, question mark or exclamation mark. All sentences contain clauses. You should try to use a range of sentences when writing. There are three main types of sentences.
Simple sentence: A sentence containing one main clause with a subject and a verb.
He reads.
Literacy is important.
Compound sentence: Two simple sentences joined with a conjunction. Both of these simple sentences would make sense on their own. Varying conjunctions makes your writing more interesting.
He read his book because it was written by his favourite author.
Literacy is important so students had an assembly about reading.
Complex sentence: A longer sentence containing a main clause and one or more subordinate clause(s) used to add more detail. The main clause makes sense on its own. However, a subordinate clause would not make sense on its own, it needs the main clause to make sense. The subordinate clause is separated by a comma (s) and/or conjunction. The clause can go at the beginning, middle or end of the sentence.
He read his book even though it was late.

Even though it was late, he read his book.

He read his book, even though it was late, because it was written by his favourite author.
How can you develop your sentences?

1. Start sentences in different ways. For example, you can start sentences with adjectives, adverbs or verbs.

Adjective: Funny books are my favourite!
Adverb: Regularly reading helps me develop a reading habit.
Verb: Looking at the front cover is a good way to choose a reading book.
2. Use a range of punctuation.

3. Nominalisation

Nominalisation is the noun form of verbs; verbs become concepts rather than actions. Nominalisation is often used in academic writing. For example:
It is important to read because it helps you in lots of ways.
Becomes: Reading is beneficial in many ways.
Germany invaded Poland in 1939. This was the immediate cause of the Second World War breaking out. Becomes: Germany's invasion of Poland in 1939 was the immediate cause of the outbreak of the Second World War.

SIXTH FORM KNOWLEDGE ORGANISER

SPaG: Spelling and Punctuation

Punctuation

Use a range of punctuation accurately when you are writing.

. Full stop Marks the end of a sentence.
, Comma Separates the items on a list or the clauses in a sentence.
' Apostrophe Shows possession (belonging) or omission (letters tak en away).
"" Quotation marks Indicate a quotation or speech.
"' Inverted commas Indicate a title.
? Question mark Used at the end of a sentence that asks a question.
! Exclamation mark Used at the end of a sentence to show surprise or shock.
: Colon Used to introduce a list or an explanation/ elaboration/ answer to what preceded. A capital letter is only needed after a colon if you are writing a proper noun (name of person or place) or two or more sentences.
; Semi-colon Joins two closely related clauses that could stand alone as sentences. Also used to separate items on a complicated list. A capital letter is not needed after a semi-colon unless you are writing a proper noun (name of person or place).

Brackets Used to add extra information which is not essential in the sentence.

Spelling

Use the following strategies to help you spell tricky words.

1. Break it into sounds (d-i-a-r-y)
2. Break it into syllables (re-mem-ber)
3. Break it into affixes (dis + satisfy)
4. Use a mnemonic (necessary - one collar, two sleeves)
5. Refer to word in the same family (muscle - muscular)
6. Say it as it sounds - spell speak (Wed-nes day)
7. Words within words (Parliament - I AM parliament)
8. Refer to etymology (bi + cycle $=$ two + wheels $)$
9. Use analogy (bright, light, night, etc)
10. Use a key word to remember a spelling rule (horrible/drinkable for -ible \& -able / advice/advise for -ice \& -ise)
11. Apply spelling rules (writing, written)
12. Learn by sight (look-cover-say-write check)
